A128139
Triangle read by rows: matrix product A004736 * A128132.
Original entry on oeis.org
1, 1, 2, 1, 3, 3, 1, 4, 5, 4, 1, 5, 7, 7, 5, 1, 6, 9, 10, 9, 6, 1, 7, 11, 13, 13, 11, 7, 1, 8, 13, 16, 17, 16, 13, 8, 1, 9, 15, 19, 21, 21, 19, 15, 9, 1, 10, 17, 22, 25, 26, 25, 22, 17, 10
Offset: 0
First few rows of the triangle:
1;
1, 2;
1, 3, 3;
1, 4, 5, 4;
1, 5, 7, 7, 5;
1, 6, 9, 10, 9, 6;
1, 7, 11, 13, 13, 11, 7;
1, 8, 13, 16, 17, 16, 13, 8;
1, 9, 15, 19, 21, 21, 19, 15, 9;
1, 10, 17, 22, 25, 26, 25, 22, 17, 10;
...
A157327
Egyptian fraction expansion for Pi/4 = arctan(1/2) + arctan(1/3) (Hutton 1776).
Original entry on oeis.org
2, 3, -24, -81, 160, 1215, -896, -15309, 4608, 177147, -22528, -1948617, 106496, 20726199, -491520, -215233605, 2228224, 2195382771, -9961472, -22082967873, 44040192, 219667417263, -192937984, -2165293113021, 838860800
Offset: 0
-
CoefficientList[Series[2 (1 - 4 x^2)/(1 + 4 x^2)^2 + 3 x (1 - 9 x^2)/(1 + 9 x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 12 2012 *)
A164991
Number of triangular involutions of n. A triangular involution is a square involution with at most three faces.
Original entry on oeis.org
1, 1, 3, 6, 13, 26, 54, 108, 221, 442, 898, 1796, 3634, 7268, 14668, 29336, 59101, 118202, 237834, 475668, 956198, 1912396, 3841588, 7683176, 15425138, 30850276, 61908564, 123817128, 248377156, 496754312
Offset: 1
Simone Rinaldi (rinaldi(AT)unisi.it), Sep 04 2009
- F. Disanto, A. Frosini, S. Rinaldi, Square Involutions, Proceedings of Permutation Patterns, July, 13-17 2009, Florence.
- T. Mansour, S. Severini, Grid polygons from permutations and their enumeration by the kernel method, 19th Conference on Formal Power Series and Algebraic Combinatorics, Tianjin, China, July 2-6, 2007.
-
Join[{1},Table[2^(n-1)-Binomial[n-2,Floor[(n-2)/2]],{n,2,30}]] (* Harvey P. Dale, Dec 26 2015 *)
-
a(n) = 2^(n-1) - binomial(n-2, (n-2)\2) \\ Michel Marcus, May 27 2013
A164916
Denominators of a BBP series for Pi/4.
Original entry on oeis.org
1, -8, -20, -24, 144, -384, -832, -896, 4352, -10240, -21504, -22528, 102400, -229376, -475136, -491520, 2162688, -4718592, -9699328, -9961472, 42991616, -92274688, -188743680, -192937984, 822083584, -1744830464, -3556769792
Offset: 0
-
CoefficientList[Series[(1 - 8*x - 20*x^2 - 24*x^3 + 112*x^4 - 128*x^5 - 192*x^6 - 128*x^7)/(1 - 16*x^4)^2, {x,0,50}], x] (* G. C. Greubel, Feb 25 2017 *)
-
x='x + O('x^50); Vec((1 - 8*x - 20*x^2 - 24*x^3 + 112*x^4 - 128*x^5 - 192*x^6 - 128*x^7)/(1 - 16*x^4)^2) \\ G. C. Greubel, Feb 25 2017
Comments