A094665
Another version of triangular array in A083061: triangle T(n,k), 0<=k<=n, read by rows; given by [0, 1, 3, 6, 10, 15, 21, 28, ...] DELTA [1, 2, 3, 4, 5, 6, 7, 8, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 4, 15, 15, 0, 34, 147, 210, 105, 0, 496, 2370, 4095, 3150, 945, 0, 11056, 56958, 111705, 107415, 51975, 10395, 0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135, 0, 14873104, 85389132, 197722980, 244909665, 178378200, 77567490, 18918900, 2027025
Offset: 0
Triangle begins:
.1;
.0, 1;
.0, 1, 3;
.0, 4, 15, 15;
.0, 34, 147, 210, 105;
.0, 496, 2370, 4095, 3150, 945;
.0, 11056, 56958, 111705, 107415, 51975, 10395;
.0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135;
From _Johannes W. Meijer_, May 24 2009: (Start)
The first few ECGP(1-2*m,n) polynomials are: ECGP(-1,n) = 1; ECGP(-3,n) = n; ECGP(-5,n) = n + 3*n^2; ECGP(-7,n) = 4*n + 15*n^2+ 15*n^3 .
The first few RES1(1-2*m,n) are: RES1(-1,n) = (1/2)*(1); RES1(-3,n) = (-1/4)*(n); RES1(-5,n) = (1/8)*(n+3*n^2); RES1(-7,n) = (-1/16)*(4*n+15*n^2+15*n^3).
(End)
-
nmax:=7; imax := nmax: T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1) * (x+1) * T1(i-1, x+1) - 2 * x^2 * T1(i-1, x)): dx:=degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1=0..dx) od: for i from 0 to imax do for j from 0 to i do A083061(i, j) := coeff(T1(i, x), x, j) od: od: for n from 0 to nmax do for k from 0 to n do T(n+1, k+1) := A083061(n, k) od: od: T(0, 0):=1: for n from 1 to nmax do T(n, 0):=0 od: seq(seq(T(n, k), k=0..n), n=0..nmax);
# Johannes W. Meijer, Jun 27 2009, revised Sep 23 2012
-
nmax = 8;
T[n_, k_] := SeriesCoefficient[Sec[x/Sqrt[2]]^(2y), {x, 0, 2n}, {y, 0, k}]* (2n)!;
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
A083061
Triangle of coefficients of a companion polynomial to the Gandhi polynomial.
Original entry on oeis.org
1, 1, 3, 4, 15, 15, 34, 147, 210, 105, 496, 2370, 4095, 3150, 945, 11056, 56958, 111705, 107415, 51975, 10395, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135, 14873104, 85389132, 197722980, 244909665, 178378200, 77567490
Offset: 0
Triangle starts (with an additional first column 1,0,0,...):
[1]
[0, 1]
[0, 1, 3]
[0, 4, 15, 15]
[0, 34, 147, 210, 105]
[0, 496, 2370, 4095, 3150, 945]
[0, 11056, 56958, 111705, 107415, 51975, 10395]
[0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135]
- R. P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014.
- R. B. Brent, Generalizing Tuenter's Binomial Sums, J. Int. Seq. 18 (2015) # 15.3.2.
- Marc Joye, Pascal Paillier and Berry Schoenmakers, On Second-Order Differential Power Analysis, in Cryptographic Hardware and Embedded Systems-CHES 2005, editors: Josyula R. Rao and Berk Sunar, Lecture Notes in Computer Science 3659 (2005) 293-308, Springer-Verlag.
- H. J. H. Tuenter, Walking into an absolute sum, The Fibonacci Quarterly, 40 (2002), 175-180.
A002105 equals the row sums (n>=2) and the first left hand column (n>=1).
(End)
-
imax := 6;
T1(0, x) := 1:
T1(0, x+1) := 1:
for i from 1 to imax do
T1(i, x) := expand((2*x+1) * (x+1) * T1(i-1, x+1) - 2*x^2*T1(i-1, x)):
dx := degree(T1(i, x)):
for k from 0 to dx do
c(k) := coeff(T1(i, x), x, k)
od:
T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1 = 0..dx):
od:
for i from 0 to imax do
for j from 0 to i do
a(i, j) := coeff(T1(i, x), x, j)
od:
od:
seq(seq(a(i, j), j = 0..i), i = 0..imax);
# Johannes W. Meijer, Jun 27 2009, revised Sep 23 2012
-
b[0, 0] = 1;
b[n_, k_] := b[n, k] = Sum[2^j*(Binomial[k + j, 1 + j] + Binomial[k + j + 1, 1 + j])*b[n - 1, k - 1 + j], {j, Max[0, 1 - k], n - k}];
a[0, 0] = 1;
a[n_, k_] := b[n, k]/2^(n - k);
Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018, after Philippe Deléham *)
-
# uses[fr2_row from A088874]
A083061_row = lambda n: [(-1)^(n-k)*m*2^(-n+k) for k,m in enumerate(fr2_row(n))]
for n in (0..7): print(A083061_row(n)) # Peter Luschny, Sep 19 2017
A162990
Triangle of polynomial coefficients related to 3F2([1,n+1,n+1],[n+2,n+2],z).
Original entry on oeis.org
4, 36, 9, 576, 144, 64, 14400, 3600, 1600, 900, 518400, 129600, 57600, 32400, 20736, 25401600, 6350400, 2822400, 1587600, 1016064, 705600, 1625702400, 406425600, 180633600, 101606400, 65028096, 45158400, 33177600, 131681894400
Offset: 1
The first few rows of the triangle are:
[4]
[36, 9]
[576, 144, 64]
[14400, 3600, 1600, 900]
The first few MN(z;n) polynomials are:
MN(z;n=1) = 4
MN(z;n=2) = 36 + 9*z
MN(z;n=3) = 576 + 144*z + 64*z^2
MN(z;n=4) = 14400 + 3600*z + 1600*z^2 + 900*z^3
- Lewin, L., Polylogarithms and Associated Functions. New York, North-Holland, 1981.
A162995 is a scaled version of this triangle.
A001819(n)*(n+1)^2 equals the row sums for n>=1.
A027451(n+1) equals the denominators of M(z, n)/(n!)^2.
-
a := proc(n, m): ((n+1)!/m)^2 end: seq(seq(a(n, m), m=1..n), n=1..7); # Johannes W. Meijer, revised Nov 29 2012
-
Table[((n+1)!/m)^2, {n, 10}, {m, n}] (* Paolo Xausa, Mar 30 2024 *)
A167560
The ED2 array read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 24, 16, 6, 1, 120, 80, 32, 8, 1, 720, 480, 192, 54, 10, 1, 5040, 3360, 1344, 384, 82, 12, 1, 40320, 26880, 10752, 3072, 680, 116, 14, 1, 362880, 241920, 96768, 27648, 6144, 1104, 156, 16, 1
Offset: 1
The ED2 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2, 4, 6, 8, 10, 12, 14, 16, 18, 20
6, 16, 32, 54, 82, 116, 156, 202, 254, 312
24, 80, 192, 384, 680, 1104, 1680, 2432, 3384, 4560
120, 480, 1344, 3072, 6144, 11160, 18840, 30024, 45672, 66864
720, 3360, 10752, 27648, 61440, 122880, 226800, 392832, 646128, 1018080
A000142 equals the first column of the array.
A047053 equals the a(n, n) diagonal of the array.
2*
A034177 equals the a(n+1, n) diagonal of the array.
A167570 equals the a(n+2, n) diagonal of the array,
A167564 equals the row sums of the ED2 array read by antidiagonals.
A167565 is a triangle related to the a(n) formulas of the rows of the ED2 array.
A167568 is a triangle related to the GF(z) formulas of the rows of the ED2 array.
A167569 is the lower left triangle of the ED2 array.
-
nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! od; for m from n+1 to mmax do a(n,m):= n! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
# alternative
A167560 := proc(n,m)
option remember ;
if m > n then
n!+add( (-1)^(k-1)*binomial(n-1,k)*procname(n,m-k),k=1..n-1) ;
else
4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! ;
end if;
end proc:
seq( seq(A167560(d-m,m),m=1..d-1),d=2..12) ; # R. J. Mathar, Jun 28 2024
-
nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n + m - 1)!/(2*m - 1)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = n! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)
A004004
a(n) = (3^(2*n+1) - 8*n - 3)/16.
Original entry on oeis.org
0, 1, 14, 135, 1228, 11069, 99642, 896803, 8071256, 72641337, 653772070, 5883948671, 52955538084, 476599842805, 4289398585298, 38604587267739, 347441285409712, 3126971568687473, 28142744118187326, 253284697063686007, 2279562273573174140, 20516060462158567341
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- A. Fransen, Conjectures on the Taylor series expansion coefficients of the Jacobian elliptic function sn(n,k), Math. Comp., 37 (1981), 475-497.
- C. L. Mallows, Letter to N. J. A. Sloane, May 16 1973
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- G. Viennot, Une interprétation combinatoire des coefficients des développements en série entière des fonctions elliptiques de Jacobi, J. Combin. Theory, A 29 (1980), 121-133.
- Index entries for linear recurrences with constant coefficients, signature (11,-19,9).
Equals the second right hand column of triangle
A162005 divided by 2.
(End)
-
LinearRecurrence[{11, -19, 9}, {0, 1, 14}, 100] (* G. C. Greubel, Jul 06 2016 *)
Table[(3^(2 n + 1) - 8 n - 3)/16, {n, 0, 24}] (* Michael De Vlieger, Jul 08 2016 *)
A322230
E.g.f.: S(x,k) = Integral C(x,k)*D(x,k)^2 dx, such that C(x,k)^2 - S(x,k)^2 = 1, and D(x,k)^2 - k^2*S(x,k)^2 = 1, as a triangle of coefficients read by rows.
Original entry on oeis.org
1, 1, 2, 1, 28, 16, 1, 270, 1032, 272, 1, 2456, 36096, 52736, 7936, 1, 22138, 1035088, 4766048, 3646208, 353792, 1, 199284, 27426960, 319830400, 704357760, 330545664, 22368256, 1, 1793606, 702812568, 18598875760, 93989648000, 120536980224, 38188155904, 1903757312, 1, 16142512, 17753262208, 1002968825344, 10324483102720, 28745874079744, 24060789342208, 5488365862912, 209865342976, 1, 145282674, 445736371872, 51882638754240, 1013356176688128, 5416305638467584, 9498855414644736, 5590122715250688, 961530104709120, 29088885112832
Offset: 0
E.g.f.: S(x,k) = x + (2*k^2 + 1)*x^3/3! + (16*k^4 + 28*k^2 + 1)*x^5/5! + (272*k^6 + 1032*k^4 + 270*k^2 + 1)*x^7/7! + (7936*k^8 + 52736*k^6 + 36096*k^4 + 2456*k^2 + 1)*x^9/9! + (353792*k^10 + 3646208*k^8 + 4766048*k^6 + 1035088*k^4 + 22138*k^2 + 1)*x^11/11! + (22368256*k^12 + 330545664*k^10 + 704357760*k^8 + 319830400*k^6 + 27426960*k^4 + 199284*k^2 + 1)*x^13/13! + ...
such that C(x,k)^2 - S(x,k)^2 = 1.
This triangle of coefficients T(n,j) of x^(2*n+1)*k^(2*j)/(2*n+1)! in e.g.f. S(x,k) begins:
1;
1, 2;
1, 28, 16;
1, 270, 1032, 272;
1, 2456, 36096, 52736, 7936;
1, 22138, 1035088, 4766048, 3646208, 353792;
1, 199284, 27426960, 319830400, 704357760, 330545664, 22368256;
1, 1793606, 702812568, 18598875760, 93989648000, 120536980224, 38188155904, 1903757312;
1, 16142512, 17753262208, 1002968825344, 10324483102720, 28745874079744, 24060789342208, 5488365862912, 209865342976; ...
RELATED SERIES.
The related series C(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
C(x,k) = 1 + x^2/2! + (8*k^2 + 1)*x^4/4! + (136*k^4 + 88*k^2 + 1)*x^6/6! + (3968*k^6 + 6240*k^4 + 816*k^2 + 1)*x^8/8! + (176896*k^8 + 513536*k^6 + 195216*k^4 + 7376*k^2 + 1)*x^10/10! + (11184128*k^10 + 51880064*k^8 + 39572864*k^6 + 5352544*k^4 + 66424*k^2 + 1)*x^12/12! + (951878656*k^12 + 6453433344*k^10 + 8258202240*k^8 + 2458228480*k^6 + 139127640*k^4 + 597864*k^2 + 1)*x^14/14! + ...
The related series D(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
D(x,k) = 1 + k^2*x^2/2! + (5*k^4 + 4*k^2)*x^4/4! + (61*k^6 + 148*k^4 + 16*k^2)*x^6/6! + (1385*k^8 + 6744*k^6 + 2832*k^4 + 64*k^2)*x^8/8! + (50521*k^10 + 410456*k^8 + 383856*k^6 + 47936*k^4 + 256*k^2)*x^10/10! + (2702765*k^12 + 32947964*k^10 + 54480944*k^8 + 17142784*k^6 + 780544*k^4 + 1024*k^2)*x^12/12! + (199360981*k^14 + 3402510924*k^12 + 8760740640*k^10 + 5199585280*k^8 + 686711040*k^6 + 12555264*k^4 + 4096*k^2)*x^14/14! + ...
-
N=10;
{S=x;C=1;D=1; for(i=1,2*N, S = intformal(C*D^2 +O(x^(2*N+1))); C = 1 + intformal(S*D^2); D = 1 + k^2*intformal(S*C*D));}
for(n=0,N, for(j=0,n, print1( (2*n+1)!*polcoeff(polcoeff(S,2*n+1,x),2*j,k),", ")) ;print(""))
A166107
A sequence related to the Madhava-Gregory-Leibniz formula for Pi.
Original entry on oeis.org
2, -10, 46, -334, 982, -10942, 140986, -425730, 7201374, -137366646, 410787198, -9473047614, 236302407090, -710245778490, 20563663645710, -638377099140510, 1912749274005030, -67020067316087550, 2477305680740159850
Offset: 0
The first few values of a(n)/p(n) are: a(0)/p(0) = 2/1; a(1)/p(1) = - 4*(1) + 2/3 = -10/3; a(2)/p(2) = 4*(1-1/3) + 2/5 = 46/15; a(3)/p(3) = - 4*(1-1/3+1/5) + 2/7 = - 334/105; a(4)/p(4)= 4*(1-1/3+1/5-1/7) + 2/9 = 982/315; a(5)/p(5) = - 4*(1-1/3+1/5-1/7+1/9) + 2/11 = -10942/3465; a(6)/p(6) = 4*(1-1/3+1/5-1/7+1/9-1/11) + 2/13 = 140986/45045; a(7)/p(7) = - 4*(1-1/3+1/5-1/7+1/9-1/11+1/13) + 2/15 = - 425730/135135.
- Frits Beukers, A rational approach to Pi, Nieuw Archief voor de Wiskunde, December 2000, pp. 372-379.
- Peter Borwein, The amazing number Pi, Nieuw Archief voor de Wiskunde, September 2000, pp. 254-258.
- Johannes W. Meijer, A modified Madhava-Gregory-Leibniz formula for Pi, Mar 02 2013.
- Pacific Institute for the Mathematical Sciences, Pi in the Sky magazine, 2000-2013.
- Wislawa Szymborska, The admirable number Pi, Miracle Fair, 2002.
- Eric. W. Weisstein, Gauss's Digamma Theorem., from Wolfram MathWorld.
- Wikipedia, Madhava of Sangamagrama.
Cf.
A162005,
A001147,
A130823,
A025547,
A220747,
A000796,
A157142,
A126809,
A133766,
A133767,
A154633.
-
A166107 := n -> A220747 (n)*((-1)^n*4*sum((-1)^(k+1)/(2*k-1), k=1..n) + 2/(2*n+1)): A130823 := n -> floor((n-1)/3)*2+1: A220747 := n -> doublefactorial(2*n+1) / doublefactorial(A130823(n)): seq(A166107(n), n=0..20);
A325220
E.g.f.: S(x,k) = -i * sn( i * Integral C(x,k) dx, k) such that C(x,k) = cn( i * Integral C(x,k) dx, k), where S(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n+1)*k^(2*j)/(2*n+1)!, as a triangle of coefficients T(n,j) read by rows.
Original entry on oeis.org
1, 2, 1, 16, 28, 1, 272, 1032, 270, 1, 7936, 52736, 36096, 2456, 1, 353792, 3646208, 4766048, 1035088, 22138, 1, 22368256, 330545664, 704357760, 319830400, 27426960, 199284, 1, 1903757312, 38188155904, 120536980224, 93989648000, 18598875760, 702812568, 1793606, 1, 209865342976, 5488365862912, 24060789342208, 28745874079744, 10324483102720, 1002968825344, 17753262208, 16142512, 1, 29088885112832, 961530104709120, 5590122715250688, 9498855414644736, 5416305638467584, 1013356176688128, 51882638754240, 445736371872, 145282674, 1
Offset: 0
E.g.f.: S(x,k) = x + (2 + 1*k^2)*x^3/3! + (16 + 28*k^2 + 1*k^4)*x^5/5! + (272 + 1032*k^2 + 270*k^4 + 1*k^6)*x^7/7! + (7936 + 52736*k^2 + 36096*k^4 + 2456*k^6 + 1*k^8)*x^9/9! + (353792 + 3646208*k^2 + 4766048*k^4 + 1035088*k^6 + 22138*k^8 + 1*k^10)*x^11/11! + (22368256 + 330545664*k^2 + 704357760*k^4 + 319830400*k^6 + 27426960*k^8 + 199284*k^10 + 1*k^12)*x^13/13! + (1903757312 + 38188155904*k^2 + 120536980224*k^4 + 93989648000*k^6 + 18598875760*k^8 + 702812568*k^10 + 1793606*k^12 + 1*k^14)*x^15/15! + ...
such that S(x,k) = cn( i * Integral C(x,k) dx, k) and C(x,k)^2 - S(x,k)^2 = 1.
This triangle of coefficients T(n,j) of x^(2*n+1)*k^(2*j)/(2*n+1)! in e.g.f. S(x,k) begins:
1;
2, 1;
16, 28, 1;
272, 1032, 270, 1;
7936, 52736, 36096, 2456, 1;
353792, 3646208, 4766048, 1035088, 22138, 1;
22368256, 330545664, 704357760, 319830400, 27426960, 199284, 1;
1903757312, 38188155904, 120536980224, 93989648000, 18598875760, 702812568, 1793606, 1;
209865342976, 5488365862912, 24060789342208, 28745874079744, 10324483102720, 1002968825344, 17753262208, 16142512, 1;
29088885112832, 961530104709120, 5590122715250688, 9498855414644736, 5416305638467584, 1013356176688128, 51882638754240, 445736371872, 145282674, 1; ...
RELATED SERIES.
The related series C(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
C(x,k) = 1 + x^2/2! + (5 + 4*k^2)*x^4/4! + (61 + 148*k^2 + 16*k^4)*x^6/6! + (1385 + 6744*k^2 + 2832*k^4 + 64*k^6)*x^8/8! + (50521 + 410456*k^2 + 383856*k^4 + 47936*k^6 + 256*k^8)*x^10/10! + (2702765 + 32947964*k^2 + 54480944*k^4 + 17142784*k^6 + 780544*k^8 + 1024*k^10)*x^12/12! + (199360981 + 3402510924*k^2 + 8760740640*k^4 + 5199585280*k^6 + 686711040*k^8 + 12555264*k^10 + 4096*k^12)*x^14/14! + ...
which also satisfies C(x,k) = cn( i * Integral C(x,k) dx, k).
The related series D(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
D(x,k) = 1 + k^2*x^2/2! + (8*k^2 + 1*k^4)*x^4/4! + (136*k^2 + 88*k^4 + 1*k^6)*x^6/6! + (3968*k^2 + 6240*k^4 + 816*k^6 + 1*k^8)*x^8/8! + (176896*k^2 + 513536*k^4 + 195216*k^6 + 7376*k^8 + 1*k^10)*x^10/10! + (11184128*k^2 + 51880064*k^4 + 39572864*k^6 + 5352544*k^8 + 66424*k^10 + 1*k^12)*x^12/12! + (951878656*k^2 + 6453433344*k^4 + 8258202240*k^6 + 2458228480*k^8 + 139127640*k^10 + 597864*k^12 + 1*k^14)*x^14/14! + ...
-
N=10;
{S=x; C=1; D=1; for(i=1, 2*N, S = intformal(C^2*D +O(x^(2*N+1))); C = 1 + intformal(S*C*D); D = 1 + k^2*intformal(S*C^2)); }
{T(n,j) = (2*n+1)!*polcoeff(polcoeff(S, 2*n+1, x), 2*j, k)}
for(n=0, N, for(j=0, n, print1( T(n,j), ", ")) ; print(""))
Comments