cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A094665 Another version of triangular array in A083061: triangle T(n,k), 0<=k<=n, read by rows; given by [0, 1, 3, 6, 10, 15, 21, 28, ...] DELTA [1, 2, 3, 4, 5, 6, 7, 8, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 4, 15, 15, 0, 34, 147, 210, 105, 0, 496, 2370, 4095, 3150, 945, 0, 11056, 56958, 111705, 107415, 51975, 10395, 0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135, 0, 14873104, 85389132, 197722980, 244909665, 178378200, 77567490, 18918900, 2027025
Offset: 0

Views

Author

Philippe Deléham, Jun 07 2004, Jun 12 2007

Keywords

Comments

Define polynomials P(n,x) = x(2x+1)P(n-1,x+1) - 2x^2P(n-1,x), P(0,x) = 1. Sequence gives triangle read by rows, defined by P(n,x) = Sum_{k = 0..n} T(n,k)*x^k. - Philippe Deléham, Jun 20 2004
From Johannes W. Meijer, May 24 2009: (Start)
In A160464 we defined the coefficients of the ES1 matrix by ES1[2*m-1,n=1] = 2*eta(2*m-1) and the recurrence relation ES1[2*m-1,n] = ((2*n-2)/(2*n-1))*(ES1[2*m-1,n-1] - ES1[2*m-3,n-1]/(n-1)^2) for m the positive and negative integers and n >= 1. As usual eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function. It is well-known that ES1[1-2*m,n=1] = (4^m-1)*(-bernoulli(2*m))/m for m >= 1. and together with the recurrence relation this leads to ES1[-1,n] = 0.5 for n >= 1.
We discovered that the n-th term of the row coefficients ES1[1-2*m,n] for m >= 1, can be generated with the rather simple polynomials RES1(1-2*m,n) = (-1)^(m+1)*ECGP(1-2*m, n)/2^m. This discovery was enabled by the recurrence relation for the RES1(1-2*m,n) which we derived from the recurrence relation for the ES1[2*m-1,n] coefficients and the fact that RES1(-1,n) = 0.5. The coefficients of the ECGP(1-2*m,n) polynomials led to this triangle and subsequently to triangle A083061. (End)
From David Callan, Jan 03 2011: (Start)
T(n,k) is the number of increasing 0-2 trees (A002105) on 2n edges in which the minimal path from the root has length k.
Proof. The number a(n,k) of such trees satisfies the recurrence a(0,0)=1, a(1,1)=1 and, counting by size of the subtree rooted at the smaller child of the root,
a(n,k) = Sum_{j=1..n-1} C(2n-1,j)*a(j,k-1)*a(n-1-j)
for 2<=k<=n, where a(n) = Sum_{k>=0} a(n,k) is the reduced tangent number A002105 (indexed from 0). The recurrence translates into the differential equation
F_x(x,y) = y*F(x,y)*G(x)
for the GF F(x,y) = Sum_{n,k>=0} a(n,k)x^(2n)/(2n)!*y^k, where G(x):=Sum_{n>=0} a(n)x^(2n+1)/(2n+1)! is known to be sqrt(2)*tan(x/sqrt(2)). The differential equation has solution F(x,y) = sec(x/sqrt(2))^(2y). (End)

Examples

			Triangle begins:
.1;
.0, 1;
.0, 1, 3;
.0, 4, 15, 15;
.0, 34, 147, 210, 105;
.0, 496, 2370, 4095, 3150, 945;
.0, 11056, 56958, 111705, 107415, 51975, 10395;
.0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135;
From _Johannes W. Meijer_, May 24 2009: (Start)
The first few ECGP(1-2*m,n) polynomials are: ECGP(-1,n) = 1; ECGP(-3,n) = n; ECGP(-5,n) = n + 3*n^2; ECGP(-7,n) = 4*n + 15*n^2+ 15*n^3 .
The first few RES1(1-2*m,n) are: RES1(-1,n) = (1/2)*(1); RES1(-3,n) = (-1/4)*(n); RES1(-5,n) = (1/8)*(n+3*n^2); RES1(-7,n) = (-1/16)*(4*n+15*n^2+15*n^3).
(End)
		

Crossrefs

From Johannes W. Meijer, May 24 2009 and Jun 27 2009: (Start)
A001147, A001880, A160470, A160471 and A160472 are the first five right hand columns.
Appears in A162005, A162006 and A162007.
(End)

Programs

  • Maple
    nmax:=7; imax := nmax: T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1) * (x+1) * T1(i-1, x+1) - 2 * x^2 * T1(i-1, x)): dx:=degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1=0..dx) od: for i from 0 to imax do for j from 0 to i do A083061(i, j) := coeff(T1(i, x), x, j) od: od: for n from 0 to nmax do for k from 0 to n do T(n+1, k+1) := A083061(n, k) od: od: T(0, 0):=1: for n from 1 to nmax do T(n, 0):=0 od: seq(seq(T(n, k), k=0..n), n=0..nmax);
    # Johannes W. Meijer, Jun 27 2009, revised Sep 23 2012
  • Mathematica
    nmax = 8;
    T[n_, k_] := SeriesCoefficient[Sec[x/Sqrt[2]]^(2y), {x, 0, 2n}, {y, 0, k}]* (2n)!;
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)

Formula

Sum_{k = 0..n} T(n, k) = A002105(n+1).
Sum_{k = 0..n} T(n, k)*2^(n-k) = A000364(n); Euler numbers.
Sum_{k = 0..n} T(n, k)*(-2)^(n-k) = 1.
RES1(1-2*m,n) = n^2*RES1(3-2*m,n)-n*(2*n+1)*RES1(3-2*m,n+1)/2 for m >= 2, with RES1(-1,n) = 0.5 for n >= 1. - Johannes W. Meijer, May 24 2009
G.f.: Sum_{n,k>=0} T(n,k)x^n/n!*y^k = sec(x/sqrt(2))^(2y).

Extensions

Term corrected by Johannes W. Meijer, Sep 23 2012

A083061 Triangle of coefficients of a companion polynomial to the Gandhi polynomial.

Original entry on oeis.org

1, 1, 3, 4, 15, 15, 34, 147, 210, 105, 496, 2370, 4095, 3150, 945, 11056, 56958, 111705, 107415, 51975, 10395, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135, 14873104, 85389132, 197722980, 244909665, 178378200, 77567490
Offset: 0

Views

Author

Hans J. H. Tuenter, Apr 19 2003

Keywords

Comments

This polynomial arises in the setting of a symmetric Bernoulli random walk and occurs in an expression for the even moments of the absolute distance from the origin after an even number of timesteps. The Gandhi polynomial, sequence A036970, occurs in an expression for the odd moments.
When formatted as a square array, first row is A002105, first column is A001147, second column is A001880.
Another version of the triangle T(n,k), 0<=k<=n, read by rows; given by [0, 1, 3, 6, 10, 15, 21, 28, ...] DELTA [1, 2, 3, 4, 5, 6, 7, 8, 9, ...] = 1; 0, 1; 0, 1, 3; 0, 4, 15, 15; 0, 34, 147, 210, 105; ... where DELTA is the operator defined in A084938. - Philippe Deléham, Jun 07 2004
In A160464 we defined the coefficients of the ES1 matrix. Our discovery that the n-th term of the row coefficients ES1[1-2*m,n] for m>=1, can be generated with rather simple polynomials led to triangle A094665 and subsequently to this one. - Johannes W. Meijer, May 24 2009
Related to polynomials defined in A160485 by a shift of +-1/2 and scaling by a power of 2. - Richard P. Brent, Jul 15 2014

Examples

			Triangle starts (with an additional first column 1,0,0,...):
[1]
[0,      1]
[0,      1,       3]
[0,      4,      15,      15]
[0,     34,     147,     210,     105]
[0,    496,    2370,    4095,    3150,     945]
[0,  11056,   56958,  111705,  107415,   51975,  10395]
[0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135]
		

Crossrefs

From Johannes W. Meijer, May 24 2009 and Jun 27 2009: (Start)
A002105 equals the row sums (n>=2) and the first left hand column (n>=1).
A001147, A001880, A160470, A160471 and A160472 are the first five right hand columns.
Appears in A162005, A162006 and A162007.
(End)

Programs

  • Maple
    imax := 6;
    T1(0, x) := 1:
    T1(0, x+1) := 1:
    for i from 1 to imax do
        T1(i, x) := expand((2*x+1) * (x+1) * T1(i-1, x+1) - 2*x^2*T1(i-1, x)):
        dx := degree(T1(i, x)):
        for k from 0 to dx do
            c(k) := coeff(T1(i, x), x, k)
        od:
        T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1 = 0..dx):
    od:
    for i from 0 to imax do
        for j from 0 to i do
            a(i, j) := coeff(T1(i, x), x, j)
        od:
    od:
    seq(seq(a(i, j), j = 0..i), i = 0..imax);
    # Johannes W. Meijer, Jun 27 2009, revised Sep 23 2012
  • Mathematica
    b[0, 0] = 1;
    b[n_, k_] := b[n, k] = Sum[2^j*(Binomial[k + j, 1 + j] + Binomial[k + j + 1, 1 + j])*b[n - 1, k - 1 + j], {j, Max[0, 1 - k], n - k}];
    a[0, 0] = 1;
    a[n_, k_] := b[n, k]/2^(n - k);
    Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018, after Philippe Deléham *)
  • Sage
    # uses[fr2_row from A088874]
    A083061_row = lambda n: [(-1)^(n-k)*m*2^(-n+k) for k,m in enumerate(fr2_row(n))]
    for n in (0..7): print(A083061_row(n)) # Peter Luschny, Sep 19 2017

Formula

Let T(i, x)=(2x+1)(x+1)T(i-1, x+1)-2x^2T(i-1, x), T(0, x)=1; so that T(1, x)=1+3x; T(2, x)=4+15x+15x^2; T(3, x)=34+147x+210x^2+105x^3, etc. Then the (i, j)-th entry in the table is the coefficient of x^j in T(i, x).
a(n, k)*2^(n-k) = A085734(n, k). - Philippe Deléham, Feb 27 2005

A162990 Triangle of polynomial coefficients related to 3F2([1,n+1,n+1],[n+2,n+2],z).

Original entry on oeis.org

4, 36, 9, 576, 144, 64, 14400, 3600, 1600, 900, 518400, 129600, 57600, 32400, 20736, 25401600, 6350400, 2822400, 1587600, 1016064, 705600, 1625702400, 406425600, 180633600, 101606400, 65028096, 45158400, 33177600, 131681894400
Offset: 1

Views

Author

Johannes W. Meijer, Jul 21 2009

Keywords

Comments

The hypergeometric function 3F2([1,n+1,n+1],[n+2,n+2],z) = (n+1)^2*Li2(z)/z^(n+1) - MN(z;n)/(n!^2*z^n) for n >= 1, with Li2(z) the dilogarithm. The polynomial coefficients of MN(z;n) lead to the triangle given above.
We observe that 3F2([1,1,1],[2,2],z) = Li2(z)/z and that 3F2([1,0,0],[1,1],z) = 1.
The generating function for the EG1[3,n] coefficients of the EG1 matrix, see A162005, is GFEG1(z;m=2) = 1/(1-z)*(3*zeta(3)/2-2*z*log(2)* 3F2([1,1,1],[2,2],z) + sum((2^(1-2*n)* factorial(2*n-1)*z^(n+1)*3F2([1,n+1,n+1],[n+2,n+2],z))/(factorial(n+1)^2), n=1..infinity)).
The zeros of the MN(z;n) polynomials for larger values of n get ever closer to the unit circle and resemble the full moon, hence we propose to call the MN(z;n) the moon polynomials.

Examples

			The first few rows of the triangle are:
  [4]
  [36, 9]
  [576, 144, 64]
  [14400, 3600, 1600, 900]
The first few MN(z;n) polynomials are:
  MN(z;n=1) = 4
  MN(z;n=2) = 36 + 9*z
  MN(z;n=3) = 576 + 144*z + 64*z^2
  MN(z;n=4) = 14400 + 3600*z + 1600*z^2 + 900*z^3
		

References

  • Lewin, L., Polylogarithms and Associated Functions. New York, North-Holland, 1981.

Crossrefs

A162995 is a scaled version of this triangle.
A001819(n)*(n+1)^2 equals the row sums for n>=1.
A162991 and A162992 equal the first and second right hand columns.
A001048, A052747, A052759, A052778, A052794 are related to the square root of the first five right hand columns.
A001044, A162993 and A162994 equal the first, second and third left hand columns.
A000142, A001710, A002301, A133799, A129923, A001715 are related to the square root of the first six left hand columns.
A027451(n+1) equals the denominators of M(z, n)/(n!)^2.
A129202(n)/A129203(n) = (n+1)^2*Li2(z=1)/(Pi^2) = (n+1)^2/6.
Cf. A002378 and A035287.

Programs

  • Maple
    a := proc(n, m): ((n+1)!/m)^2 end: seq(seq(a(n, m), m=1..n), n=1..7); # Johannes W. Meijer, revised Nov 29 2012
  • Mathematica
    Table[((n+1)!/m)^2, {n, 10}, {m, n}] (* Paolo Xausa, Mar 30 2024 *)

Formula

a(n,m) = ((n+1)!/m)^2 for n >= 1 and 1 <= m <= n.

A167560 The ED2 array read by ascending antidiagonals.

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 24, 16, 6, 1, 120, 80, 32, 8, 1, 720, 480, 192, 54, 10, 1, 5040, 3360, 1344, 384, 82, 12, 1, 40320, 26880, 10752, 3072, 680, 116, 14, 1, 362880, 241920, 96768, 27648, 6144, 1104, 156, 16, 1
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The coefficients in the upper right triangle of the ED2 array (m>n) were found with the a(n,m) formula while the coefficients in the lower left triangle of the ED2 array (m<=n) were found with the recurrence relation, see below. We use for the array rows the letter n (>=1) and for the array columns the letter m (>=1).
The ED2 array is related to the EG1 matrix, see A162005, because sum(EG1(2*m-1,n) * z^(2*m-1), m=1..infinity) = ((2*n-1)!/(4^(n-1)*(n-1)!^2))*int(sinh(y*(2*z))/cosh(y)^(2*n), y=0..infinity).
For the ED1, ED3 and ED4 arrays see A167546, A167572 and A167584.

Examples

			The ED2 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2, 4, 6, 8, 10, 12, 14, 16, 18, 20
6, 16, 32, 54, 82, 116, 156, 202, 254, 312
24, 80, 192, 384, 680, 1104, 1680, 2432, 3384, 4560
120, 480, 1344, 3072, 6144, 11160, 18840, 30024, 45672, 66864
720, 3360, 10752, 27648, 61440, 122880, 226800, 392832, 646128, 1018080
		

Crossrefs

A000012, A005843 (n>=1), 2*A104249 (n>=1), A167561, A167562 and A167563 equal the first sixth rows of the array.
A000142 equals the first column of the array.
A047053 equals the a(n, n) diagonal of the array.
2*A034177 equals the a(n+1, n) diagonal of the array.
A167570 equals the a(n+2, n) diagonal of the array,
A167564 equals the row sums of the ED2 array read by antidiagonals.
A167565 is a triangle related to the a(n) formulas of the rows of the ED2 array.
A167568 is a triangle related to the GF(z) formulas of the rows of the ED2 array.
A167569 is the lower left triangle of the ED2 array.
Cf. A162005 (EG1 triangle).
Cf. A167546 (ED1 array), A167572 (ED3 array), A167584 (ED4 array).

Programs

  • Maple
    nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! od; for m from n+1 to mmax do a(n,m):= n! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
    # alternative
    A167560 := proc(n,m)
        option remember ;
        if m > n then
            n!+add( (-1)^(k-1)*binomial(n-1,k)*procname(n,m-k),k=1..n-1) ;
        else
            4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! ;
        end if;
    end proc:
    seq( seq(A167560(d-m,m),m=1..d-1),d=2..12) ; # R. J. Mathar, Jun 28 2024
  • Mathematica
    nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n + m - 1)!/(2*m - 1)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = n! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)

Formula

a(n,m) = ((m-1)!/((m-n-1)!))*int(sinh(y*(2*n))/(cosh(y))^(2*m),y=0..infinity) for m>n.
The (n-1)-differences of the n-th array row lead to the recurrence relation
sum((-1)^k*binomial(n-1,k)*a(n-1,m-k),k=0..n-1) = n!
which in its turn leads to, see A167569,
a(n,m) = 4^(m-1)*(m-1)!*(n+m-1)!/(2*m-1)! if m<=n.

A004004 a(n) = (3^(2*n+1) - 8*n - 3)/16.

Original entry on oeis.org

0, 1, 14, 135, 1228, 11069, 99642, 896803, 8071256, 72641337, 653772070, 5883948671, 52955538084, 476599842805, 4289398585298, 38604587267739, 347441285409712, 3126971568687473, 28142744118187326, 253284697063686007, 2279562273573174140, 20516060462158567341
Offset: 0

Views

Author

Keywords

Comments

The o.g.f. of this sequence enabled the analysis of A162008, A162009 and A162010. - Johannes W. Meijer, Jun 27 2009

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

From Johannes W. Meijer, Jun 27 2009: (Start)
Equals the second right hand column of triangle A162005 divided by 2.
Cf. A162008, A162009, A162010, A162011 and A162014 [2*(1+3*z)].
(End)

Programs

  • Mathematica
    LinearRecurrence[{11, -19, 9}, {0, 1, 14}, 100] (* G. C. Greubel, Jul 06 2016 *)
    Table[(3^(2 n + 1) - 8 n - 3)/16, {n, 0, 24}] (* Michael De Vlieger, Jul 08 2016 *)

Formula

G.f.: -x*(1+3*x)/(9*x-1)/(x-1)^2. - Simon Plouffe in his 1992 dissertation.
a(n) = 11*a(n-1) - 19*a(n-2) + 9*a(n-3). - Johannes W. Meijer, Jun 27 2009
a(n) = a(n-1) + (3^(2*n-1) - 1)/2. - Lechoslaw Ratajczak, Jul 06 2016
E.g.f.: (-3 - 8*x + 3*exp(8*x))*exp(x)/16. - Ilya Gutkovskiy, Jul 07 2016

A322230 E.g.f.: S(x,k) = Integral C(x,k)*D(x,k)^2 dx, such that C(x,k)^2 - S(x,k)^2 = 1, and D(x,k)^2 - k^2*S(x,k)^2 = 1, as a triangle of coefficients read by rows.

Original entry on oeis.org

1, 1, 2, 1, 28, 16, 1, 270, 1032, 272, 1, 2456, 36096, 52736, 7936, 1, 22138, 1035088, 4766048, 3646208, 353792, 1, 199284, 27426960, 319830400, 704357760, 330545664, 22368256, 1, 1793606, 702812568, 18598875760, 93989648000, 120536980224, 38188155904, 1903757312, 1, 16142512, 17753262208, 1002968825344, 10324483102720, 28745874079744, 24060789342208, 5488365862912, 209865342976, 1, 145282674, 445736371872, 51882638754240, 1013356176688128, 5416305638467584, 9498855414644736, 5590122715250688, 961530104709120, 29088885112832
Offset: 0

Views

Author

Paul D. Hanna, Dec 14 2018

Keywords

Comments

Equals a row reversal of triangle A325220.
Appears to be a row reversal of EG1 triangle A162005, which has other formulas.
Compare to sn(x,k) = Integral cn(x,k)*dn(x,k) dx, where sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions (see triangle A060628).
Compare also to Michael Pawellek's generalized elliptic functions.

Examples

			E.g.f.: S(x,k) = x + (2*k^2 + 1)*x^3/3! + (16*k^4 + 28*k^2 + 1)*x^5/5! + (272*k^6 + 1032*k^4 + 270*k^2 + 1)*x^7/7! + (7936*k^8 + 52736*k^6 + 36096*k^4 + 2456*k^2 + 1)*x^9/9! + (353792*k^10 + 3646208*k^8 + 4766048*k^6 + 1035088*k^4 + 22138*k^2 + 1)*x^11/11! + (22368256*k^12 + 330545664*k^10 + 704357760*k^8 + 319830400*k^6 + 27426960*k^4 + 199284*k^2 + 1)*x^13/13! + ...
such that C(x,k)^2 - S(x,k)^2 = 1.
This triangle of coefficients T(n,j) of x^(2*n+1)*k^(2*j)/(2*n+1)! in e.g.f. S(x,k) begins:
1;
1, 2;
1, 28, 16;
1, 270, 1032, 272;
1, 2456, 36096, 52736, 7936;
1, 22138, 1035088, 4766048, 3646208, 353792;
1, 199284, 27426960, 319830400, 704357760, 330545664, 22368256;
1, 1793606, 702812568, 18598875760, 93989648000, 120536980224, 38188155904, 1903757312;
1, 16142512, 17753262208, 1002968825344, 10324483102720, 28745874079744, 24060789342208, 5488365862912, 209865342976; ...
RELATED SERIES.
The related series C(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
C(x,k) = 1 + x^2/2! + (8*k^2 + 1)*x^4/4! + (136*k^4 + 88*k^2 + 1)*x^6/6! + (3968*k^6 + 6240*k^4 + 816*k^2 + 1)*x^8/8! + (176896*k^8 + 513536*k^6 + 195216*k^4 + 7376*k^2 + 1)*x^10/10! + (11184128*k^10 + 51880064*k^8 + 39572864*k^6 + 5352544*k^4 + 66424*k^2 + 1)*x^12/12! + (951878656*k^12 + 6453433344*k^10 + 8258202240*k^8 + 2458228480*k^6 + 139127640*k^4 + 597864*k^2 + 1)*x^14/14! + ...
The related series D(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
D(x,k) = 1 + k^2*x^2/2! + (5*k^4 + 4*k^2)*x^4/4! + (61*k^6 + 148*k^4 + 16*k^2)*x^6/6! + (1385*k^8 + 6744*k^6 + 2832*k^4 + 64*k^2)*x^8/8! + (50521*k^10 + 410456*k^8 + 383856*k^6 + 47936*k^4 + 256*k^2)*x^10/10! + (2702765*k^12 + 32947964*k^10 + 54480944*k^8 + 17142784*k^6 + 780544*k^4 + 1024*k^2)*x^12/12! + (199360981*k^14 + 3402510924*k^12 + 8760740640*k^10 + 5199585280*k^8 + 686711040*k^6 + 12555264*k^4 + 4096*k^2)*x^14/14! + ...
		

Crossrefs

Cf. A322231 (C), A322232 (D).
Cf. A325220 (row reversal), A162005.

Programs

  • PARI
    N=10;
    {S=x;C=1;D=1; for(i=1,2*N, S = intformal(C*D^2 +O(x^(2*N+1))); C = 1 + intformal(S*D^2); D = 1 + k^2*intformal(S*C*D));}
    for(n=0,N, for(j=0,n, print1( (2*n+1)!*polcoeff(polcoeff(S,2*n+1,x),2*j,k),", ")) ;print(""))

Formula

E.g.f. S = S(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n+1) * k^(2*j) / (2*n+1)!, along with related series C = C(x,k) and D = D(x,k), satisfies:
(1a) S = Integral C*D^2 dx.
(1b) C = 1 + Integral S*D^2 dx.
(1c) D = 1 + k^2 * Integral S*C*D dx.
(2a) C^2 - S^2 = 1.
(2b) D^2 - k^2*S^2 = 1.
(3a) C + S = exp( Integral D^2 dx ).
(3b) D + k*S = exp( k * Integral C*D dx ).
(4a) S = sinh( Integral D^2 dx ).
(4b) S = sinh( k * Integral C*D dx ) / k.
(4c) C = cosh( Integral D^2 dx ).
(4d) D = cosh( k * Integral C*D dx ).
(5a) d/dx S = C*D^2.
(5b) d/dx C = S*D^2.
(5c) d/dx D = k^2 * S*C*D.
From Paul D. Hanna, Mar 31 2019, Apr 20 2019 (Start):
Given sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions, with i^2 = -1, k' = sqrt(1-k^2), then
(6a) S = -i * sn( i * Integral D dx, k),
(6b) C = cn( i * Integral D dx, k),
(6c) D = dn( i * Integral D dx, k).
(7a) S = sc( Integral D dx, k') = sn(Integral D dx, k')/cn(Integral D dx, k'),
(7b) C = nc( Integral D dx, k') = 1/cn(Integral D dx, k'),
(7c) D = dc( Integral D dx, k') = dn(Integral D dx, k')/cn(Integral D dx, k'). (End)
Row sums equal (2*n+1)!*(2*n)!/(n!^2*4^n) = A079484(n), the product of two consecutive odd double factorials.
Main diagonal equals A000182, the tangent numbers.

A166107 A sequence related to the Madhava-Gregory-Leibniz formula for Pi.

Original entry on oeis.org

2, -10, 46, -334, 982, -10942, 140986, -425730, 7201374, -137366646, 410787198, -9473047614, 236302407090, -710245778490, 20563663645710, -638377099140510, 1912749274005030, -67020067316087550, 2477305680740159850
Offset: 0

Views

Author

Johannes W. Meijer, Oct 06 2009, Feb 26 2013, Mar 02 2013

Keywords

Comments

The EG1 matrix is defined in A162005. The first column of this matrix leads to the function PLS(z) = sum(2*eta(2*m-1)*z^(2*m-2), m=1..infinity) = 2*log(2) - Psi(z) - Psi(-z) + Psi(z/2) + Psi(-z/2). The values of this function for z=n+1/2 are related to Pi in a curious way.
Gauss's digamma theorem leads to PLS(z=n+1/2) = (-1)^n*4*sum((-1)^(k+1)/(2*k-1), k=1..n) + 2/(2*n+1). Now we define PLS(z=n+1/2) = a(n)/p(n) with a(n) the sequence given above and for p(n) we choose the esthetically nice p(n) = (2*n-1)!!/(floor((n-2)/3)*2+1)!!, n=>0. For even values of n the limit(a(2*n)/p(2*n), n=infinity) = Pi and for odd values of n the limit(a(2*n+1)/p(2*n+1), n=infinity) = - Pi. We observe that the a(n)/p(n) formulas resemble the partial sums of the Madhava-Gregory-Leibniz series for Pi = 4*(1-1/3+1/5-1/7+ ...), see the examples. The 'extra term' that appears in the a(n)/p(n) formulas, i.e., 2/(2*n+1), speeds up the convergence of abs(a(n)/p(n)) significantly. The first appearance of a digit in the decimal expansion of Pi occurs here for n: 1, 3, 9, 30, 74, 261, 876, 3056, .., cf. A126809. [Comment modified by the author, Oct 09 2009]

Examples

			The first few values of a(n)/p(n) are: a(0)/p(0) = 2/1; a(1)/p(1) = - 4*(1) + 2/3 = -10/3; a(2)/p(2) = 4*(1-1/3) + 2/5 = 46/15; a(3)/p(3) = - 4*(1-1/3+1/5) + 2/7 = - 334/105; a(4)/p(4)= 4*(1-1/3+1/5-1/7) + 2/9 = 982/315; a(5)/p(5) = - 4*(1-1/3+1/5-1/7+1/9) + 2/11 = -10942/3465; a(6)/p(6) = 4*(1-1/3+1/5-1/7+1/9-1/11) + 2/13 = 140986/45045; a(7)/p(7) = - 4*(1-1/3+1/5-1/7+1/9-1/11+1/13) + 2/15 = - 425730/135135.
		

Crossrefs

Programs

  • Maple
    A166107 := n -> A220747 (n)*((-1)^n*4*sum((-1)^(k+1)/(2*k-1), k=1..n) + 2/(2*n+1)): A130823 := n -> floor((n-1)/3)*2+1: A220747 := n -> doublefactorial(2*n+1) / doublefactorial(A130823(n)): seq(A166107(n), n=0..20);

Formula

a(n) = p(n)*(-1)^n*4*sum((-1)^(k+1)/(2*k-1), k=1..n) + 2/(2*n+1) with
p(n) = doublefactorial(2*n+1)/doublefactorial(floor((n-1)/3)*2+1) = A220747(n)
PLS(z) = 2*log(2) - Psi(z) - Psi(-z) + Psi(z/2) + Psi(-z/2)
PLS(z=n+1/2) = a(n)/p(n) = (-1)^n*4*sum((-1)^(k+1)/(2*k-1), k=1..n) + 2/(2*n+1)
PLS(z=2*n+5/2) - PLS(z=2*n+1/2) = 2/(4*n+5) - 4/(4*n+3) + 2/(4*n+1) which leads to:
Pi = 2 + 16 * sum(1/((4*n+5)*(4*n+3)*(4*n+1)), n=0 .. infinity).
PLS (z=2*n +7/2) - PLS(z=2*n+3/2) = 2/(4*n+7) - 4/(4*n+5) + 2/(4*n+3) which leads to:
Pi = 10/3 - 16*sum(1/((4*n+7)*(4*n+5)*(4*n+3)), n=0 .. infinity).
The combination of these two formulas leads to:
Pi = 8/3 + 48* sum(1/((4*n+7)*(4*n+5)*(4*n+3)*(4*n+1)), n=0 .. infinity).

A325220 E.g.f.: S(x,k) = -i * sn( i * Integral C(x,k) dx, k) such that C(x,k) = cn( i * Integral C(x,k) dx, k), where S(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n+1)*k^(2*j)/(2*n+1)!, as a triangle of coefficients T(n,j) read by rows.

Original entry on oeis.org

1, 2, 1, 16, 28, 1, 272, 1032, 270, 1, 7936, 52736, 36096, 2456, 1, 353792, 3646208, 4766048, 1035088, 22138, 1, 22368256, 330545664, 704357760, 319830400, 27426960, 199284, 1, 1903757312, 38188155904, 120536980224, 93989648000, 18598875760, 702812568, 1793606, 1, 209865342976, 5488365862912, 24060789342208, 28745874079744, 10324483102720, 1002968825344, 17753262208, 16142512, 1, 29088885112832, 961530104709120, 5590122715250688, 9498855414644736, 5416305638467584, 1013356176688128, 51882638754240, 445736371872, 145282674, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 13 2019

Keywords

Comments

Equals a row reversal of triangle A322230.
Appears to equal EG1 triangle A162005, which has other formulas.
Compare to sn(x,k) = Integral cn(x,k)*dn(x,k) dx, where sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions (see triangle A060628).

Examples

			E.g.f.: S(x,k) = x + (2 + 1*k^2)*x^3/3! + (16 + 28*k^2 + 1*k^4)*x^5/5! + (272 + 1032*k^2 + 270*k^4 + 1*k^6)*x^7/7! + (7936 + 52736*k^2 + 36096*k^4 + 2456*k^6 + 1*k^8)*x^9/9! + (353792 + 3646208*k^2 + 4766048*k^4 + 1035088*k^6 + 22138*k^8 + 1*k^10)*x^11/11! + (22368256 + 330545664*k^2 + 704357760*k^4 + 319830400*k^6 + 27426960*k^8 + 199284*k^10 + 1*k^12)*x^13/13! + (1903757312 + 38188155904*k^2 + 120536980224*k^4 + 93989648000*k^6 + 18598875760*k^8 + 702812568*k^10 + 1793606*k^12 + 1*k^14)*x^15/15! + ...
such that S(x,k) = cn( i * Integral C(x,k) dx, k) and C(x,k)^2 - S(x,k)^2 = 1.
This triangle of coefficients T(n,j) of x^(2*n+1)*k^(2*j)/(2*n+1)! in e.g.f. S(x,k) begins:
1;
2, 1;
16, 28, 1;
272, 1032, 270, 1;
7936, 52736, 36096, 2456, 1;
353792, 3646208, 4766048, 1035088, 22138, 1;
22368256, 330545664, 704357760, 319830400, 27426960, 199284, 1;
1903757312, 38188155904, 120536980224, 93989648000, 18598875760, 702812568, 1793606, 1;
209865342976, 5488365862912, 24060789342208, 28745874079744, 10324483102720, 1002968825344, 17753262208, 16142512, 1;
29088885112832, 961530104709120, 5590122715250688, 9498855414644736, 5416305638467584, 1013356176688128, 51882638754240, 445736371872, 145282674, 1; ...
RELATED SERIES.
The related series C(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
C(x,k) = 1 + x^2/2! + (5 + 4*k^2)*x^4/4! + (61 + 148*k^2 + 16*k^4)*x^6/6! + (1385 + 6744*k^2 + 2832*k^4 + 64*k^6)*x^8/8! + (50521 + 410456*k^2 + 383856*k^4 + 47936*k^6 + 256*k^8)*x^10/10! + (2702765 + 32947964*k^2 + 54480944*k^4 + 17142784*k^6 + 780544*k^8 + 1024*k^10)*x^12/12! + (199360981 + 3402510924*k^2 + 8760740640*k^4 + 5199585280*k^6 + 686711040*k^8 + 12555264*k^10 + 4096*k^12)*x^14/14! + ...
which also satisfies C(x,k) = cn( i * Integral C(x,k) dx, k).
The related series D(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
D(x,k) = 1 + k^2*x^2/2! + (8*k^2 + 1*k^4)*x^4/4! + (136*k^2 + 88*k^4 + 1*k^6)*x^6/6! + (3968*k^2 + 6240*k^4 + 816*k^6 + 1*k^8)*x^8/8! + (176896*k^2 + 513536*k^4 + 195216*k^6 + 7376*k^8 + 1*k^10)*x^10/10! + (11184128*k^2 + 51880064*k^4 + 39572864*k^6 + 5352544*k^8 + 66424*k^10 + 1*k^12)*x^12/12! + (951878656*k^2 + 6453433344*k^4 + 8258202240*k^6 + 2458228480*k^8 + 139127640*k^10 + 597864*k^12 + 1*k^14)*x^14/14! + ...
		

Crossrefs

Cf. A325221 (C), A325222 (D).
Cf. A322230 (row reversal), A162005.

Programs

  • PARI
    N=10;
    {S=x; C=1; D=1; for(i=1, 2*N, S = intformal(C^2*D +O(x^(2*N+1))); C = 1 + intformal(S*C*D); D = 1 + k^2*intformal(S*C^2)); }
    {T(n,j) = (2*n+1)!*polcoeff(polcoeff(S, 2*n+1, x), 2*j, k)}
    for(n=0, N, for(j=0, n, print1( T(n,j), ", ")) ; print(""))

Formula

E.g.f. S = S(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n+1)*k^(2*j)/(2*n+1)!, along with related series C = C(x,k) and D = D(x,k), satisfies:
(1a) S = Integral C^2*D dx.
(1b) C = 1 + Integral S*C*D dx.
(1c) D = 1 + k^2 * Integral S*C^2 dx.
(2a) C^2 - S^2 = 1.
(2b) D^2 - k^2*S^2 = 1.
(3a) C + S = exp( Integral C*D dx ).
(3b) D + k*S = exp( k * Integral C^2 dx ).
(4a) S = sinh( Integral C*D dx ).
(4b) S = sinh( k * Integral C^2 dx ) / k.
(4c) C = cosh( Integral C*D dx ).
(4d) D = cosh( k * Integral C^2 dx ).
(5a) d/dx S = C^2*D.
(5b) d/dx C = S*C*D.
(5c) d/dx D = k^2 * S*C^2.
Given sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions, with i^2 = -1, k' = sqrt(1-k^2), then
(6a) S = -i * sn( i * Integral C dx, k),
(6b) C = cn( i * Integral C dx, k),
(6c) D = dn( i * Integral C dx, k).
(7a) S = sc( Integral C dx, k') = sn(Integral C dx, k')/cn(Integral C dx, k'),
(7b) C = nc( Integral C dx, k') = 1/cn(Integral C dx, k'),
(7c) D = dc( Integral C dx, k') = dn(Integral C dx, k')/cn(Integral C dx, k').
Row sums equal (2*n+1)!*(2*n)!/(n!^2*4^n) = A079484(n), the product of two consecutive odd double factorials.
Column T(n,0) = A000182(n), where A000182 is the tangent numbers.
Previous Showing 11-18 of 18 results.