cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A073003 Decimal expansion of -exp(1)*Ei(-1), also called Gompertz's constant, or the Euler-Gompertz constant.

Original entry on oeis.org

5, 9, 6, 3, 4, 7, 3, 6, 2, 3, 2, 3, 1, 9, 4, 0, 7, 4, 3, 4, 1, 0, 7, 8, 4, 9, 9, 3, 6, 9, 2, 7, 9, 3, 7, 6, 0, 7, 4, 1, 7, 7, 8, 6, 0, 1, 5, 2, 5, 4, 8, 7, 8, 1, 5, 7, 3, 4, 8, 4, 9, 1, 0, 4, 8, 2, 3, 2, 7, 2, 1, 9, 1, 1, 4, 8, 7, 4, 4, 1, 7, 4, 7, 0, 4, 3, 0, 4, 9, 7, 0, 9, 3, 6, 1, 2, 7, 6, 0, 3, 4, 4, 2, 3, 7
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

0! - 1! + 2! - 3! + 4! - 5! + ... = (Borel) Sum_{n>=0} (-y)^n n! = KummerU(1,1,1/y)/y.
Decimal expansion of phi(1) where phi(x) = Integral_{t>=0} e^-t/(x+t) dt. - Benoit Cloitre, Apr 11 2003
The divergent series g(x=1,m) = 1^m*1! - 2^m*2! + 3^m*3! - 4^m*4! + ..., m => -1, is intimately related to Gompertz's constant. We discovered that g(x=1,m) = (-1)^m * (A040027(m) - A000110(m+1) * A073003) with A000110 the Bell numbers and A040027 a sequence that was published by Gould, see for more information A163940. - Johannes W. Meijer, Oct 16 2009
Named by Le Lionnais (1983) after the English self-educated mathematician and actuary Benjamin Gompertz (1779 - 1865). It was named the Euler-Gompertz constant by Finch (2003). Lagarias (2013) noted that he has not located this constant in Gompertz's writings. - Amiram Eldar, Aug 15 2020

Examples

			0.59634736232319407434107849936927937607417786015254878157348491...
With n := 10^5, Sum_{k >= 0} (n/(n + 1))^k/(n + k) = 0.5963(51...). - _Peter Bala_, Jun 19 2024
		

References

  • Bruce C. Berndt, Ramanujan's notebooks Part II, Springer, p. 171
  • Bruce C. Berndt, Ramanujan's notebooks Part I, Springer, p. 144-145.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 303, 424-425.
  • Francois Le Lionnais, Les nombres remarquables, Paris: Hermann, 1983. See p. 29.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 44, page 426.
  • H. S. Wall, Analytic Theory of Continued Fractions, Van Nostrand, New York, 1948, p. 356.

Crossrefs

Cf. A000522 (arrangements), A001620, A000262, A002720, A002793, A058006 (alternating factorial sums), A091725, A099285, A153229, A201203, A245780, A283743 (Ei(1)/e), A321942, A369883.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); ExponentialIntegralE1(1)*Exp(1); // G. C. Greubel, Dec 04 2018
    
  • Mathematica
    RealDigits[N[-Exp[1]*ExpIntegralEi[-1], 105]][[1]]
    (* Second program: *)
    G = 1/Fold[Function[2*#2 - #2^2/#1], 2, Reverse[Range[10^4]]] // N[#, 105]&; RealDigits[G] // First (* Jean-François Alcover, Sep 19 2014 *)
  • PARI
    eint1(1)*exp(1) \\ Charles R Greathouse IV, Apr 23 2013
    
  • Sage
    numerical_approx(exp_integral_e(1,1)*exp(1), digits=100) # G. C. Greubel, Dec 04 2018

Formula

phi(1) = e*(Sum_{k>=1} (-1)^(k-1)/(k*k!) - Gamma) = 0.596347362323194... where Gamma is the Euler constant.
G = 0.596347... = 1/(1+1/(1+1/(1+2/(1+2/(1+3/(1+3/(1+4/(1+4/(1+5/(1+5/(1+6/(... - Philippe Deléham, Aug 14 2005
Equals A001113*A099285. - Johannes W. Meijer, Oct 16 2009
From Peter Bala, Oct 11 2012: (Start)
Stieltjes found the continued fraction representation G = 1/(2 - 1^2/(4 - 2^2/(6 - 3^2/(8 - ...)))). See [Wall, Chapter 18, (92.7) with a = 1]. The sequence of convergents to the continued fraction begins [1/2, 4/7, 20/34, 124/209, ...]. The numerators are in A002793 and the denominators in A002720.
Also, 1 - G has the continued fraction representation 1/(3 - 2/(5 - 6/(7 - ... -n*(n+1)/((2*n+3) - ...)))) with convergents beginning [1/3, 5/13, 29/73, 201/501, ...]. The numerators are in A201203 (unsigned) and the denominators are in A000262.
(End)
G = f(1) with f solution to the o.d.e. x^2*f'(x) + (x+1)*f(x)=1 such that f(0)=1. - Jean-François Alcover, May 28 2013
From Amiram Eldar, Aug 15 2020: (Start)
Equals Integral_{x=0..1} 1/(1-log(x)) dx.
Equals Integral_{x=1..oo} exp(1-x)/x dx.
Equals Integral_{x=0..oo} exp(-x)*log(x+1) dx.
Equals Integral_{x=0..oo} exp(-x)/(x+1) dx. (End)
From Gleb Koloskov, May 01 2021: (Start)
Equals Integral_{x=0..1} LambertW(e/x)-1 dx.
Equals Integral_{x=0..1} 1+1/LambertW(-1,-x/e) dx. (End)
Equals lim_{n->oo} A040027(n)/A000110(n+1). - Vaclav Kotesovec, Feb 22 2021
G = lim_{n->oo} A321942(n)/A000262(n). - Peter Bala, Mar 21 2022
Equals Sum_{n >= 1} 1/(n*L(n, -1)*L(n-1, -1)), where L(n, x) denotes the n-th Laguerre polynomial. This is the case x = 1 of the identity Integral_{t >= 0} exp(-t)/(x + t) dt = Sum_{n >= 1} 1/(n*L(n, -x)*L(n-1, -x)) valid for Re(x) > 0. - Peter Bala, Mar 21 2024
Equals lim_{n->oo} Sum_{k >= 0} (n/(n + 1))^k/(n + k). Cf. A099285. - Peter Bala, Jun 18 2024

Extensions

Additional references from Gerald McGarvey, Oct 10 2005
Link corrected by Johannes W. Meijer, Aug 01 2009

A014619 Exponential generating function is -f(x) * Integral_{t = 0..x} exp(exp(-t) - 1) dt, where f(x) = exp(1 - x - exp(-x)) is the exponential generating function for A014182.

Original entry on oeis.org

-1, 1, 1, -5, 5, 21, -105, 141, 777, -5513, 13209, 39821, -527525, 2257425, -41511, -70561285, 531862173, -1559180499, -8858267353, 147780183829, -936560917615, 1352130196615, 38710924110081, -487251979381019, 2846575686392251, 872653153712201
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n - k + 1) * StirlingS2[n + 1, k + 1] * ((-1)^k * k! * Subfactorial[-k - 1] - Subfactorial[-1]), {k, 0, n}]; Table[a[n] // FullSimplify, {n, 1, 26}] (* Jean-François Alcover, Jan 09 2014, after Vladeta Jovovic *)
    nmax = 25; Rest[CoefficientList[Series[E^(-E^(-x) - x) * (Gamma[0, -1] - Gamma[0, -E^(-x)]), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, May 10 2024 *)
  • PARI
    a(n)=local(A,B);if(n<0,0, A=exp(-x+x*O(x^n)); B=exp(A-1);n!*polcoeff(-intformal(B)*A/B,n))

Formula

E.g.f. A(x) = y satisfies y'' + y'(2-exp(-x)) + y = 0. - Michael Somos, Mar 11 2004
a(n) = Sum_{k = 0..n} (-1)^(n-k+1)*Stirling2(n+1, k+1)*A003422(k). - Vladeta Jovovic, Jan 06 2005
The sequence b(n) = (-1)^n*a(n) satisfies the recurrence: b(n) = -Sum_{i = 1..n} b(i-1)*C(n, i), b(0) = -1. - Ralf Stephan, Feb 24 2005
From Peter Bala, Mar 23 2024: (Start)
It appears that a(n) = Sum_{k = 1..n+1} binomial(n+1, k)*a(k). See Dragovich 2017, Table 1.
If true then the following hold: setting a(0) = -1 then
a(n) = Sum_{k = 1..n-1} (-1)^(n-k)*binomial(n-1, k-1)*a(k-1);
the o.g.f F(x) = - ( x/(1 + x)^2 + x^2/((1 + x)*(1 + 2*x)^2) + x^3/((1 + x)*(1 + 2*x)*(1 + 3*x)^2) + ... ) - Cf. A040027;
F(x) = - x/(1 + x)^2 + x/(1 + x)^2*F(x/(1 + x)). (End)

Extensions

More terms from Jason Earls, Jun 28 2001

A163972 The MC polynomials.

Original entry on oeis.org

1, 0, 3, 1, 0, 2, 45, 22, 3, 0, 0, 10, 107, 61, 13, 1, 0, -48, 20, 2100, 14855, 9168, 2390, 300, 15, 0, 0, -336, 92, 6320, 33765, 21803, 6378, 1010, 85, 3, 0, 11520, -2016, -198296, 33012, 2199246, 9547461, 6331782, 1994265, 362474, 39375, 2394, 63
Offset: 1

Views

Author

Johannes W. Meijer, Aug 13 2009

Keywords

Comments

The a(n,p) polynomials, see below with the extra p for the column number, generate the coefficients of the left hand columns of triangle A163940. These polynomials are interesting in their own right. They have many curious properties; e.g., for p >= 1: a(n=1, p) = p, a(n=0, p) = 0, a(n = -1, p) = (-1)^(p+1), a(n=-2,p) = (-1)^(p+1)*(2)^(p-2) and a(n = -(2*p+1), 2*p) = 0, which is the outermost zero of the a(n, 2*p); for p >= 10: a(n=-10, p) = -362880*10^(p-10); etc.
The numbers in the denominators of the a(n,p) are the Minkowski numbers A053657.
The Maple program generates the coefficients of the polynomials that appear in the numerators of the a(n,p), see the sequence above. We have made use of a nice little program that Peter Luschny recently wrote for the Minkowski numbers! For the an(p,k) in the Maple program for p >= 1 we have 0 <= k <= (2*p-2). A word of caution: The value of nmax has to be chosen sufficiently large in order to let Maple find the o.g.f.s.
The zero patterns of the a(n,p) polynomials resemble the Montezuma Cypress (Taxodium mucronatum). A famous Montezuma Cypress is 'El Arbol del Tule' (the Tule tree) in Mexico. It is the second stoutest tree in the world, circumference 36 meters, and is approximately 1500 years old. Considering this I propose to call the a(n,p) polynomials the MC polynomials.
The row sums equal n*A053657(n). [Johannes W. Meijer, Nov 29 2012]

Examples

			The a(n,p) formulas of the first few left hand columns of the A163940 triangle (p is the column number):
a(n,1) = (1)/1
a(n,2) = (0 + 3*n + n^2)/2
a(n,3) = (0 + 2*n + 45*n^2+ 22*n^3 + 3*n^4)/24
a(n,4) = (0 + 0*n + 10*n^2 + 107*n^3 + 61*n^4 + 13*n^5 + n^6)/48
a(n,5) = (0 - 48*n + 20*n^2 + 2100*n^3 + 14855*n^4 + 9168*n^5 + 2390*n^6 + 300*n^7 + 15*n^8)/5760
a(n,6) = (0 + 0*n -336*n^2 +92*n^3 +6320*n^4 +33765*n^5 +21803*n^6 +6378*n^7 +1010*n^8 +85*n^9 +3*n^10)/11520
a(n,7) = (0 + 11520*n -2016*n^2 -198296*n^3 +33012*n^4 +2199246*n^5 +9547461*n^6+ 6331782*n^7 +1994265*n^8 +362474*n^9 +39375*n^10 +2394*n^11 +63*n^12)/2903040
		

Crossrefs

A000012, A000096, A163943 and A163944 are the first four left hand columns of A163940.
Cf. A053657 (Minkowski), A163402 and A075264.

Programs

  • Maple
    pmax:=6; nmax:=70; with(genfunc): A053657 := proc(n) local P, p, q, s, r; P := select(isprime, [$2..n]); r:=1; for p in P do s := 0: q := p-1; do if q > (n-1) then break fi; s := s + iquo(n-1, q); q := q*p; od; r := r * p^s; od; r end: for px from 1 to nmax do Gf(px):= convert(series(1/((1-(px-1)*x)^2*product((1-k*x), k=1..px-2)),x,nmax+1-px),polynom): for qy from 0 to nmax-px do a(px+qy,qy):=coeff(Gf(px),x,qy) od; od: for p from 1 to pmax do f(x):=0: for ny from p to nmax do f(x):=f(x)+a(ny,p-1)*x^(ny-p) od: f(x):= series(f(x),x, nmax): Gx:=convert(%, ratpoly): rgf_sequence('recur',Gx,x,G,n): a(n,p):=sort(simplify (rgf_expand(Gx,x,n)),n): f(p):=sort(a(n,p)*A053657(p),n,ascending): for k from 0 to 2*p-2 do an(p,k):= coeff(f(p),n,k) od; od: T:=1: for p from 1 to pmax do for k from 0 to 2*p-2 do a(T):=an(p,k): T:=T+1 od: od: seq(a(n),n=1..T-1); for p from 1 to pmax do seq(an(p,k),k=0..2*p-2) od; for p from 1 to pmax do MC(n,p):=sort(a(n,p),n,ascending) od;
Previous Showing 11-13 of 13 results.