cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A167584 The ED4 array read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 13, 6, 1, 76, 41, 10, 1, 789, 372, 93, 14, 1, 7734, 4077, 1020, 169, 18, 1, 110937, 53106, 13269, 2212, 269, 22, 1, 1528920, 795645, 198990, 33165, 4140, 393, 26, 1, 28018665, 13536360, 3383145, 563850, 70485, 6996, 541, 30, 1
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The coefficients in the upper right triangle of the ED4 array (m>n) were found with the a(n,m) formula while the coefficients in the lower left triangle of the ED4 array (m<=n) were found with the recurrence relation, see below. We use for the array rows the letter n (>=1) and for the array columns the letter m (>=1).
For the ED1, ED2 and ED3 arrays see A167546, A167560 and A167572.
The Madhava-Gregory-Leibniz series representation for Pi/4 is the case m = 0 of the following more general result: for m = 0,1,2,... there holds 1/(2*m)! * Pi/4 = Sum_{k >= 0} ( (-1)^(m+k) * 1/Product_{j = -m .. m} (2*k + 1 + 2*j) ). The entries of this table are given by truncating these series to n-1 terms and then scaling by certain double factorials -- see the formula below. - Peter Bala, Nov 06 2016

Examples

			The ED4 array begins with:
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1
  2, 6, 10, 14, 18, 22, 26, 30, 34, 38
  13, 41, 93, 169, 269, 393, 541, 713, 909, 1129
  76, 372, 1020, 2212, 4140, 6996, 10972, 16260, 23052, 31540
  789, 4077, 13269, 33165, 70485, 133869, 233877, 382989, 595605, 888045
  7734, 53106, 198990, 563850, 1339110, 2812194, 5389566, 9619770, 16216470, 26081490
  ...
From _Peter Bala_, Nov 06 2016: (Start)
Table extended to nonpositive values of m:
  n\m|     -4     -3    -2    -1    0
  -----------------------------------
   0 |      0      0     0     0    0
   1 |      1      1     1     1    1
   2 |    -18    -14   -10    -6   -2
   3 |    233    141    73    29    9
   4 |  -2844  -1428  -620  -228  -60
   5 |  39309  17877  7149  2325  525
  ...
Column  0: (-1)^(n+1)*(2*n - 3)!!*n. See A001193;
Column -1: (-1)^n*(2*n - 5)!!/3!!*n*(7 - 4*n^2);
Column -2: (-1)^n*(2*n - 7)!!/5!!*n(-149 + 120*n^2 - 16*n^4);
Column -3: (-1)^n*(2*n - 9)!!/7!!*n*(6483 - 6076*n^2 + 1232*n^4 - 64*n^6);
Column -4: (-1)^n*(2*n - 11)!!/9!!*n*(-477801 + 489136*n^2 - 120288*n^4 + 9984*n^6 - 256*n^8). (End)
		

Crossrefs

A000012, A016825, A167585, A167586 and A167587 equal the first five rows of the array.
A024199, A167588 and A167589 equal the first three columns of the array.
A167590 equals the row sums of the ED4 array read by antidiagonals.
A167591 is a triangle related to the a(n) formulas of the rows of the ED4 array.
A167594 is a triangle related to the GF(z) formulas of the rows of the ED4 array.
Cf. A002866 (the 2^(n-1)*n! factor).
Cf. A167546 (ED1 array), A167560 (ED2 array), A167572 (ED3 array). Cf. A001193, A003881.

Programs

  • Maple
    T := proc (n, m) option remember;
          if n = 0 then 0
           elif n = 1 then 1
           else (4*m-2)*T(n-1,m)+(2*n+2*m-5)*(2*n-2*m-1)*T(n-2,m)
          end if;
         end proc:
    #square array read by antidiagonals
    seq(seq(T(n-m,m), m = 1..n-1), n = 1..10);
    # Peter Bala, Nov 06 2016
  • Mathematica
    T[0, k_] := 0; T[1, k_] := 1; T[n_, k_] := T[n, k] = (4*k - 2)*T[n - 1, k] + (2*n + 2*k - 5)*(2*n - 2*k - 1)*T[n - 2, k]; Table[T[n - k, k], {n, 2, 12}, {k, 1, n - 1}] (* G. C. Greubel, Jan 20 2017 *)

Formula

a(n,m) = ((2*m-3)!!/(2*(2*m-2*n-3)!!))*Integral_{y=0..oo} sinh(y*(2*n))/(cosh(y))^(2*m-1) dy for m>n.
The (n-1)-differences of the n-th array row lead to the recurrence relation
Sum_{k=0..n-1} (-1)^k*binomial(n-1,k)*a(n,m-k) = 2^(n-1)*n!
From Peter Bala, Nov 06 2016: (Start)
T(n,m) = ((2*m - 3)!!/(2*(2*m - 2*n - 3)!!)) * Sum_{k = 0..n-1} (-1)^(k+1)*binomial(2*n - k - 1, k)*2^(2*n - 2*k - 1)*1/(2*n - 2*m - 2*k + 1), for n and m >= 0.
Note the double factorial for a negative odd integer N is defined in terms of the gamma function as N!! = 2^((N+1)/2)*Gamma(N/2 + 1)/sqrt(Pi).
T(n, m) = (2*m - 3)!! * (2*n + 2*m - 3)!! * Sum_{k = 0..n-1} ( (-1)^(m + k + 1) / Product_{j = -(m-1) .. m-1} (2*k + 1 + 2*j) ).
Using this result we can extend the table to nonpositive values of m (the column index). Column 0 is a signed version of A001193. We have for m <= 0, T(n,m) = (2*n - 2*|m| - 3)!!/(2*|m| + 1)!! * Sum_{k = 0..n-1} (-1)^k*Product_{j = -|m|..|m|} (2*k + 1 + 2*j).
Recurrence: T(n, m) = (4*m - 2)*T(n-1, m) + (2*n + 2*m - 5)*(2*n - 2*m - 1)*T(n-2, m).
For a fixed value of n, the entries in row n are polynomial in the value of the column index m. The first few polynomials are [1, 4*m - 2, 12*m^2 - 8*m + 9, 32*m^3 - 16*m^2 + 120*m - 60, 80*m^4 + 952*m^2 - 768*m + 525, ...]. (End)

A014481 a(n) = 2^n*n!*(2*n+1).

Original entry on oeis.org

1, 6, 40, 336, 3456, 42240, 599040, 9676800, 175472640, 3530096640, 78033715200, 1880240947200, 49049763840000, 1377317368627200, 41421544567603200, 1328346084409344000, 45249466617298944000, 1631723190138961920000, 62098722550431350784000, 2487305589722682753024000
Offset: 0

Views

Author

Keywords

Comments

Denominators of expansion of Integral_{t=0..x} exp(-(t^2)/2) dt = sqrt(Pi/2)*erf(x/sqrt(2)) in powers x^(2*n+1), n >= 0. Numerators are (-1)^n. - Wolfdieter Lang, Jun 29 2007

Crossrefs

From Johannes W. Meijer, Nov 12 2009: (Start)
Appears in A167572.
Equals row sums of A167583. (End)

Programs

  • Haskell
    a014481 n = a009445 n `div` a001147 n  -- Reinhard Zumkeller, Dec 03 2011
  • Magma
    [2^n*Factorial(n)*(2*n+1): n in [0..50]]; // Vincenzo Librandi, Apr 25 2011
    
  • Mathematica
    a[n_]:=2^n*n!*(2*n+1); Array[a,18,0] (* Stefano Spezia, Jan 03 2025 *)

Formula

E.g.f.: (1+2x)/(1-2x)^2.
a(n) = A009445(n) / A001147(n). - Reinhard Zumkeller, Dec 03 2011
G.f.: G(0)/(2*x) - 1/x, where G(k)= 1 - 2*x+ 1/(1 - 2*x*(k+1)/(2*x*(k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
From Amiram Eldar, Jul 31 2020: (Start)
Sum_{n>=0} 1/a(n) = sqrt(Pi/2) * erfi(1/sqrt(2)).
Sum_{n>=0} (-1)^n/a(n) = sqrt(Pi/2) * erf(1/sqrt(2)). (End)
V(h, q) = -h/(q*sqrt(2*Pi)) + Sum_{k>=0} (-1)^k*h*q^(2*k-1)*(q^2+(2*k+1))/(a(k)*sqrt(2*Pi)) = (h/2)*erf(q/sqrt(2)) + h*(exp(-q^2/2) - 1)/(q*sqrt(2*Pi)), where V is Nicholson's V-function. V(h, q) = Integral_{x=0..h} Integral_{y=0..q*x/h} phi(x)*phi(y) dydx, where phi(x) is the standard normal density exp(-x^2/2)/sqrt(2*Pi). - Thomas Scheuerle, Jan 21 2025
Pi/4 = 1 - Sum_{n>=0} A001147(n)/a(n+1). - Raul Prisacariu, May 20 2025

A167573 a(n) = 20*n^2 + 3.

Original entry on oeis.org

23, 83, 183, 323, 503, 723, 983, 1283, 1623, 2003, 2423, 2883, 3383, 3923, 4503, 5123, 5783, 6483, 7223, 8003, 8823, 9683, 10583, 11523, 12503, 13523, 14583, 15683, 16823, 18003, 19223, 20483, 21783, 23123, 24503, 25923, 27383, 28883, 30423, 32003, 33623, 35283
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Crossrefs

Equals the third row of the ED3 array A167572.

Programs

  • Mathematica
    Table[20*n^2 + 3, {n, 1, 100}] (* or *) LinearRecurrence[{3,-3,1},{23, 83, 183}, 100] (* G. C. Greubel, Jun 16 2016 *)
  • PARI
    a(n)=20*n^2+3 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 20*n^2 + 3.
G.f.: z*(3*z^2 + 14*z + 23)/(1-z)^3. [Corrected by Elmo R. Oliveira, May 31 2025]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. - G. C. Greubel, Jun 16 2016
E.g.f.: -3 + (3 + 20*x + 20*x^2)*exp(x). - Elmo R. Oliveira, May 31 2025
Previous Showing 11-13 of 13 results.