cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A167591 A triangle related to the a(n) formulas of the rows of the ED4 array A167584.

Original entry on oeis.org

1, 4, -2, 12, -8, 9, 32, -16, 120, -60, 80, 0, 952, -768, 525, 192, 160, 5664, -5008, 12396, -5670, 448, 896, 27888, -20672, 162740, -133128, 72765, 1024, 3584, 120064, -46720, 1537216, -1562464, 2557296, -1081080, 2304, 12288, 467712, 76800
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The a(n) formulas given below correspond to the first ten rows of the ED4 array A167584.
The recurrence relations of the a(n) formulas for the left hand triangle columns, see the cross-references below, lead to the sequences A013609, A003148, A081277 and A079628.

Examples

			Row 1: a(n) = 1.
Row 2: a(n) = 4*n - 2.
Row 3: a(n) = 12*n^2 - 8*n + 9.
Row 4: a(n) = 32*n^3 - 16*n^2 + 120*n - 60.
Row 5: a(n) = 80*n^4 + 0*n^3 + 952*n^2 - 768*n + 525.
Row 6: a(n) = 192*n^5 + 160*n^4 + 5664*n^3 - 5008*n^2 + 12396*n - 5670.
Row 7: a(n) = 448*n^6 + 896*n^5 + 27888*n^4 - 20672*n^3 + 162740*n^2 - 133128*n + 72765.
Row 8: a(n) = 1024*n^7 + 3584*n^6 + 120064*n^5 - 46720*n^4 + 1537216*n^3 - 1562464*n^2 + 2557296*n - 1081080.
Row 9: a(n) = 2304*n^8 + 12288*n^7 + 467712*n^6 + 76800*n^5 + 11589216*n^4 - 12058368*n^3 + 47963568*n^2 - 38278080*n + 18243225.
Row 10: a(n) = 5120*n^9 + 38400*n^8 + 1686528*n^7 + 1540608*n^6 + 73898880*n^5 - 66179520*n^4 + 631348672*n^3 - 669559008*n^2 + 869709780*n - 344594250.
		

Crossrefs

A167584 is the ED4 array.
A000012, A016825, A167585, A167586 and A167587 equal the first five rows of the ED4 array.
A001787, A167592, A167593, A168307 and A168308 equal the first five left hand triangle columns.
A001193 equals the first right hand triangle column.
A024199 equals the row sums.

Extensions

Comment and formulas added by Johannes W. Meijer, Nov 23 2009

A167588 The second column of the ED4 array A167584.

Original entry on oeis.org

1, 6, 41, 372, 4077, 53106, 795645, 13536360, 257055705, 5400196830, 124170067665, 3104906420700, 83818724048325, 2431059231544650, 75354930324303525, 2486926158748693200, 87036225272850632625, 3220532233879435917750, 125594424461427237941625
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Crossrefs

Equals the second column of the ED4 array A167584.
Other columns are A024199 and A167589.
Cf. A007509 and A025547 (the sum((-1)^(k+n)/(2*k+1), k=0..n-1) factor), A001147, A142970.

Programs

  • Mathematica
    Table[(1/2)*(-1)^(n)*(2*n - 3)!!*((n) + (4*n^2 - 1)*Sum[(-1)^(k + n)/(2*k + 1), {k, 0, n - 1}]), {n, 1, 50}] (* G. C. Greubel, Jun 17 2016 *)

Formula

a(n) = (1/2)*(-1)^(n)*(2*n-3)!!*(n+(4*n^2-1)*Sum_{k=0..n-1} ((-1)^(k+n)/(2*k+1))).
From Peter Bala, Nov 01 2016: (Start)
a(n) = (2*n + 1)!! * Sum_{k = 0..n-1} (-1)^(k-1)/((2*k - 1)*(2*k + 1)*(2*k + 3)).
a(n) ~ Pi * 2^(n-3/2) * ((n+1)/e)^(n+1).
E.g.f.: (4*x*sqrt(1 - 4*x^2) + 2*arcsin(2*x))/(8*(1 - 2*x)^(3/2)).
a(n) = 6*a(n-1) + (2*n - 5)*(2*n - 1)*a(n-2) with a(0) = 0, a(1) = 1.
The sequence b(n) := (2*n + 1)!! = (2*n + 2)!/((n + 1)!*2^(n+1)) satisfies the same recurrence with b(0) = 1 and b(1) = 3. This leads to the continued fraction representation a(n) = b(n)*[ 1/(3 - 3/(6 + 5/(6 + 21/(6 + ... + (2*n - 5)*(2*n - 1)/(6))))) ] for n >= 2.
As n -> infinity, a(n)/(A001147(n+1)) -> 1/2!*Pi/4 = 1/(3 - 3/(6 + 5/(6 + 21/(6 + ... + (2*n - 5)*(2*n - 1)/(6 + ...))))). Compare with the generalized continued fraction representation Pi = 3 + 1^2/(6 + 3^2/(6 + 5^2/(6 + ...))). See A142970. (End)

A167589 The third column of the ED4 array A167584.

Original entry on oeis.org

1, 10, 93, 1020, 13269, 198990, 3383145, 64276920, 1349846505, 31046064210, 776157686325, 20956154152500, 607730434609725, 18839602224969750, 621707822126431425, 21759750056864358000, 805111392478121276625
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Crossrefs

Equals the third column of the ED4 array A167584.
Other columns are A024199 and A167588.
Cf. A007509 and A025547 (the sum((-1)^(k+n)/(2*k+1), k=0..n-1) factor), A001147.

Programs

  • Mathematica
    Table[(1/8)*(-1)^(n)*(2*n - 5)!!*((4*n^3 - 11*n) + (16*n^4 - 40*n^2 + 9)*(Sum[(-1)^(k + n)/(2*k + 1), {k, 0, n - 1}])), {n, 1, 50}] (* G. C. Greubel, Jun 17 2016 *)

Formula

a(n) = (1/8)*(-1)^n*(2*n-5)!!*((4*n^3-11*n)+(16*n^4-40*n^2+9)*(Sum_{k=0..n-1} (-1)^(k+n)/(2*k+1) ) ).
From Peter Bala, Nov 01 2016: (Start)
a(n) = 3*(2*n + 3)!! * Sum_{k = 0..n-1} (-1)^k/((2*k - 3)*(2*k - 1)*(2*k + 1)*(2*k + 3)*(2*k + 5)).
a(n) ~ Pi*2^(n - 5/2)*((n + 2)/e)^(n + 2).
E.g.f.: (6*arcsin(2*x) + 4*x*sqrt(1 - 4*x^2)*(5 - 8*x^2))/(32*(1 - 2*x)^(5/2)).
a(n) = 10*a(n) + (2*n - 7)*(2*n + 1)*a(n-2) with a(0) = 0, a(1) = 1.
The sequence b(n) := (2*n + 3)!! = (2*n + 4)!/((n + 2)!*2^(n+2)) = A001147(n+2) satisfies the same recurrence with b(0) = 3 and b(1) = 15. This leads to the continued fraction representation a(n) = 1/3*b(n)*( 1/(5 - 15/(10 - 7/(10 + 9/(10 + 33/(10 + ... + (2*n - 7)*(2*n + 1)/(10)))))) ) for n >= 2.
As n -> infinity, 3*a(n)/(A001147(n+2)) -> 9/4!*Pi/4 = 1/(5 - 15/(10 - 7/(10 + 9/(10 + 33/(10 + ... + (2*n - 7)*(2*n + 1)/(10 + ...)))))). (End)

A167594 A triangle related to the GF(z) formulas of the rows of the ED4 array A167584.

Original entry on oeis.org

1, 2, 2, 9, 2, 13, 60, -12, 68, 76, 525, -300, 774, 132, 789, 5670, -5250, 11820, -3636, 6702, 7734, 72765, -92610, 212415, -143340, 143307, 19086, 110937, 1081080, -1746360, 4286520, -4246200, 4156200, -1204200, 1305000, 1528920
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The GF(z) formulas given below correspond to the first ten rows of the ED4 array A167584. The polynomials in their numerators lead to the triangle given above.

Examples

			Row 1: GF(z) = 1/(1-z).
Row 2: GF(z) = (2*z + 2)/(1-z)^2.
Row 3: GF(z) = (9*z^2 + 2*z + 13)/(1-z)^3.
Row 4: GF(z) = (60*z^3 - 12*z^2 + 68*z + 76)/(1-z)^4.
Row 5: GF(z) = (525*z^4 - 300*z^3 + 774*z^2 + 132*z + 789)/(1-z)^5.
Row 6: GF(z) = (5670*z^5 - 5250*z^4 + 11820*z^3 - 3636*z^2 + 6702*z + 7734)/(1-z)^6.
Row 7: GF(z) = (72765*z^6 - 92610*z^5 + 212415*z^4 - 143340*z^3 + 143307*z^2 + 19086*z + 110937)/ (1-z)^7.
Row 8: GF(z) = (1081080*z^7 - 1746360*z^6 + 4286520*z^5 - 4246200*z^4 + 4156200*z^3 - 1204200*z^2 + 1305000*z + 1528920)/(1-z)^8.
Row 9: GF(z) = (18243225*z^8 - 35675640*z^7 + 95176620*z^6 -121723560*z^5 + 132769350*z^4 - 73816200*z^3 + 45017100*z^2 + 4887720*z + 28018665) / (1-z)^9.
Row 10: GF(z) = (344594250*z^9 - 790539750*z^8 + 2299457160*z^7 - 3567314520*z^6 + 4441299660*z^5 - 3398138100*z^4 + 2160066600*z^3 - 550619640*z^2 + 421244730*z + 497895210)/(1-z)^10.
		

Crossrefs

A167584 is the ED4 array.
A001193 equals the first left hand column.
A024199 equals the first right hand column.
A002866 equals the row sums.

A167586 The fourth row of the ED4 array A167584.

Original entry on oeis.org

76, 372, 1020, 2212, 4140, 6996, 10972, 16260, 23052, 31540, 41916, 54372, 69100, 86292, 106140, 128836, 154572, 183540, 215932, 251940, 291756, 335572, 383580, 435972, 492940, 554676, 621372, 693220, 770412, 853140, 941596
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Crossrefs

Equals the fourth row of the ED4 array A167584.

Programs

  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {76, 372, 1020, 2212}, 100] (* G. C. Greubel, Jun 17 2016 *)

Formula

a(n) = 32*n^3 - 16*n^2 + 120*n - 60.
G.f.: (60*z^3 - 12*z^2 + 68*z + 76)/(1-z)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - G. C. Greubel, Jun 17 2016

A167587 The fifth row of the ED4 array A167584: 80*n^4 + 952*n^2 - 768*n + 525.

Original entry on oeis.org

789, 4077, 13269, 33165, 70485, 133869, 233877, 382989, 595605, 888045, 1278549, 1787277, 2436309, 3249645, 4253205, 5474829, 6944277, 8693229, 10755285, 13165965, 15962709, 19184877, 22873749, 27072525, 31826325
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Crossrefs

Equals the fifth row of the ED4 array A167584.

Programs

  • Magma
    [80*n^4+952*n^2-768*n+525: n in [1..35]]; // Vincenzo Librandi, Jul 21 2011, simplified by M. F. Hasler, Oct 08 2014
    
  • Mathematica
    Table[80n^4+952n^2-768n+525,{n,30}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{789,4077,13269,33165,70485},30] (* Harvey P. Dale, Jul 21 2011 *)
  • PARI
    a(n)=80*n^4+952*n^2-768*n+525 \\ M. F. Hasler, Oct 08 2014

Formula

a(n) = 80*n^4 + 952*n^2 - 768*n + 525. [Simplified by M. F. Hasler, Oct 08 2014]
G.f.: (525*z^4 - 300*z^3 + 774*z^2 + 132*z + 789)/(1-z)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(1)=789, a(2)=4077, a(3)=13269, a(4)=33165, a(5)=70485. - Harvey P. Dale, Jul 21 2011

Extensions

Corrected and edited by M. F. Hasler, Oct 08 2014

A167590 The row sums of the ED4 array A167584 read by antidiagonals.

Original entry on oeis.org

1, 3, 20, 128, 1269, 13019, 179816, 2561280, 45580073, 831425459, 18116729724, 402900613376, 10389410535965
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Crossrefs

A167584 is the ED4 array.

A002866 a(0) = 1; for n > 0, a(n) = 2^(n-1)*n!.

Original entry on oeis.org

1, 1, 4, 24, 192, 1920, 23040, 322560, 5160960, 92897280, 1857945600, 40874803200, 980995276800, 25505877196800, 714164561510400, 21424936845312000, 685597979049984000, 23310331287699456000, 839171926357180416000, 31888533201572855808000, 1275541328062914232320000
Offset: 0

Views

Author

Keywords

Comments

Consider the set of n-1 odd numbers from 3 to 2n-1, i.e., {3, 5, ..., 2n-1}. There are 2^(n-1) subsets from {} to {3, 5, 7, ..., 2n-1}; a(n) = the sum of the products of terms of all the subsets. (Product for empty set = 1.) a(4) = 1 + 3 + 5 + 7 + 3*5 + 3*7 + 5*7 + 3*5*7 = 192. - Amarnath Murthy, Sep 06 2002
Also, a(n-1) is the number of ways to lace a shoe that has n pairs of eyelets such that there is a straight (horizontal) connection between all adjacent eyelet pairs. - Hugo Pfoertner, Jan 27 2003
This is also the denominator of the integral of ((1-x^2)^(n-1/2))/(Pi/4) where x ranges from 0 to 1. The numerator is (2*x)!/(x!*2^x). In both cases n starts at 1. E.g., the denominator when n=3 is 24 and the numerator is 15. - Al Hakanson (hawkuu(AT)excite.com), Oct 17 2003
Number of ways to use the elements of {1,...,n} once each to form a sequence of nonempty lists. - Bob Proctor, Apr 18 2005
Row sums of A131222. - Paul Barry, Jun 18 2007
Number of rotational symmetries of an n-cube. The number of all symmetries of an n-cube is A000165. See Egan for signed cycle notation, other notes, tables and animation. - Jonathan Vos Post, Nov 28 2007
1, 4, 24, 192, 1920, ... is the exponential (or binomial) convolution of 1, 1, 3, 15, 105, ... and 1, 3, 15, 105, 945 (A001147). - David Callan, Jul 25 2008
The n-th term of this sequence is the number of regions into which n-dimensional space is partitioned by the 2n hyperplanes of the form x_i=x_j and x_i=-x_j (for 1 <= i < j <= n). - Edward Scheinerman (ers(AT)jhu.edu), May 04 2008
a(n) is the number of ways to seat n churchgoers into pews and then linearly order the nonempty pews. - Geoffrey Critzer, Mar 16 2009
Equals the row sums of A156992. - Geoffrey Critzer, Mar 05 2010
From Gary W. Adamson, May 17 2010: (Start)
Next term in the series = (1, 3, 5, 7, ...) dot (1, 1, 4, 24, ...);
e.g., a(5) = 1920 = (1, 3, 5, 7, 9) dot (1, 1, 4, 24, 192) = (1 + 3 + 20 + 168 + 1728). (End)
a(n) is the number of ways to represent the permutations of {1,2,...,n} in cycle notation, taking into account that we can permute the order of all cycles and also have k ways to write a length-k cycle.
For positive n, a(n) equals the permanent of the n X n matrix with consecutive integers 1 to n along the main diagonal, consecutive integers 2 to n along the subdiagonal, and 1's everywhere else. - John M. Campbell, Jul 10 2011
From Dennis P. Walsh, Nov 26 2011: (Start)
Number of ways to arrange n books on consecutive bookshelves.
To derive a(n) = n!2^(n-1), we note that there are n! ways to arrange the books in a row. Then there are 2^(n-1) ways to place the arranged books on consecutive shelves since there are 2^(n-1) ordered partitions of n. Hence a(n) = n!2^(n-1).
Also, a(n) is the number of ways to stack n different alphabet blocks in contiguous stacks.
Furthermore, a(n) is the number of labeled, rooted forests that have (i) each root labeled larger than any nonroot, (ii) each root having exactly one child node, (iii) n non-root nodes, and (iv) each node in the forest with at most one child node.
Example: a(3)=24 since there are 24 arrangements of books b1, b2, and b3 on consecutive shelves, namely, |b1 b2 b3|, |b1 b3 b2|, |b2 b1 b3|, |b2 b3 b1|, |b3 b1 b2|, |b3 b2 b1|, |b1 b2||b3|, |b2 b1| |b3|, |b1 b3||b2|, |b3 b1||b2|, |b2 b3||b1|, |b3 b2||b1|, |b1||b2 b3|,|b1||b3 b2|, |b2||b1 b3|, |b2||b3 b1|, |b3||b1 b2|, |b3||b2 b1|, |b1||b2||b3|, |b1||b3||b2|, |b2||b1||b3|, |b2||b3||b1|, |b3||b1||b2|, and |b3||b2||b1|.
(End)
For n > 3, a(n) is the order of the Coxeter group (also called Weyl group) of type D_n. - Tom Edgar, Nov 05 2013

Examples

			For the shoe lacing: with the notation introduced in A078602 the a(3-1) = 4 "straight" lacings for 3 pairs of eyelets are: 125346, 125436, 134526, 143526. Their mirror images 134256, 143256, 152346, 152436 are not counted.
a(3) = 24 because the 24 rotations of a three-dimensional cube fall into four distinct classes:
(i) the identity, which leaves everything fixed;
(ii) 9 rotations which leave the centers of two faces fixed, comprising rotations of 90, 180 and 270 degrees for each of 3 pairs of faces;
(iii) 6 rotations which leave the centers of two edges fixed, comprising rotations of 180 degrees for each of 6 pairs of edges;
(iv) 8 rotations which leave two vertices fixed, comprising rotations of 120 and 240 degrees for each of 4 pairs of vertices. For an n-cube, rotations can be more complex. For example, in 4 dimensions a rotation can either act in a single plane, such as the x-y plane, while leaving any vectors orthogonal to that plane unchanged, or it can act in two orthogonal planes, performing rotations in both and leaving no vectors fixed. In higher dimensions, there will be room for more planes and more choices as to the number of planes in which a given rotation acts.
		

References

  • N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6, p. 257.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.26)
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections give A002671 and A274304.
Appears in A167584 (n >= 1); equals the row sums of A167594 (n >= 1). - Johannes W. Meijer, Nov 12 2009

Programs

  • FORTRAN
    See Pfoertner link.
    
  • Magma
    [1] cat [2^(n-1)*Factorial(n): n in [1..25]]; // G. C. Greubel, Jun 13 2019
    
  • Maple
    A002866 := n-> `if`(n=0,1,2^(n-1)*n!):
    with(combstruct); SeqSeqL := [S, {S=Sequence(U,card >= 1), U=Sequence(Z,card >=1)},labeled];
    seq(ceil(count(Subset(n))*count(Permutation(n))/2),n=0..17); # Zerinvary Lajos, Oct 16 2006
    G(x):=(1-x)/(1-2*x): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..17); # Zerinvary Lajos, Apr 04 2009
  • Mathematica
    Join[{1},Table[2^(n-1) n!,{n,25}]] (* Harvey P. Dale, Sep 27 2013 *)
    a[n_] := (-1)^n Hypergeometric2F1Regularized[1, -n, 2 - n, 2];
    Table[a[n], {n, 0, 20}]  (* Peter Luschny, Apr 26 2024 *)
  • PARI
    a(n)=if(n,n!<<(n-1),1) \\ Charles R Greathouse IV, Jan 13 2012
    
  • PARI
    a(n) = if(n == 0, 1, 2^(n-1)*n!);
    vector(25, n, a(n-1)) \\ Altug Alkan, Oct 18 2015
    
  • Sage
    [1] + [2^(n-1)*factorial(n) for n in (1..25)] # G. C. Greubel, Jun 13 2019

Formula

E.g.f.: (1 - x)/(1 - 2*x). - Paul Barry, May 26 2003, corrected Jun 18 2007
a(n) = n! * A011782(n).
For n >= 1, a(n) = Sum_{i=0..m/2} (-1)^i * binomial(n, i) * (n-2*i)^n. - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
a(n) ~ 2^(1/2) * Pi^(1/2) * n^(3/2) * 2^n * e^(-n) * n^n*{1 + 13/12*n^(-1) + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 23 2001
E.g.f. is B(A(x)), where B(x) = 1/(1 - x) and A(x) = x/(1 - x). - Geoffrey Critzer, Mar 16 2009
a(n) = Sum_{k=1..n} A156992(n,k). - Dennis P. Walsh, Nov 26 2011
a(n+1) = Sum_{k=0..n} A132393(n,k)*2^(n+k), n>0. - Philippe Deléham, Nov 28 2011
G.f.: 1 + x/(1 - 4*x/(1 - 2*x/(1 - 6*x/(1 - 4*x/(1 - 8*x/(1 - 6*x/(1 - 10*x/(1 - ... (continued fraction). - Philippe Deléham, Nov 29 2011
a(n) = 2*n*a(n-1) for n >= 2. - Dennis P. Walsh, Nov 29 2011
G.f.: (1 + 1/G(0))/2, where G(k) = 1 + 2*x*k - 2*x*(k + 1)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 02 2012
G.f.: 1 + x/Q(0), m=4, where Q(k) = 1 - m*x*(2*k + 1) - m*x^2*(2*k + 1)*(2*k + 2)/(1 - m*x*(2*k + 2) - m*x^2*(2*k + 2)*(2*k + 3)/Q(k+1)) ; (continued fraction). - Sergei N. Gladkovskii, Sep 23 2013
G.f.: 1 + x/(G(0) - x), where G(k) = 1 + x*(k+1) - 4*x*(k + 1)/(1 - x*(k + 2)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
a(n) = Sum_{k=0..n} L(n,k)*k!; L(n,k) are the unsigned Lah numbers. - Peter Luschny, Oct 18 2014
a(n) = round(Sum_{k >= 1} log(k)^n/k^(3/2))/4, for n >= 1, which is related to the n-th derivative of zeta(x) evaluated at x = 3/2. - Richard R. Forberg, Jan 02 2015
a(n) = n!*hypergeom([-n+1], [], -1) for n>=1. - Peter Luschny, Apr 08 2015
From Amiram Eldar, Aug 04 2020: (Start)
Sum_{n >= 0} 1/a(n) = 2*sqrt(e) - 1.
Sum_{n >= 0} (-1)^n/a(n) = 2/sqrt(e) - 1. (End)

A024199 a(n) = (2n-1)!! * Sum_{k=0..n-1}(-1)^k/(2k+1).

Original entry on oeis.org

0, 1, 2, 13, 76, 789, 7734, 110937, 1528920, 28018665, 497895210, 11110528485, 241792844580, 6361055257725, 163842638377950, 4964894559637425, 147721447995130800, 5066706567801827025, 171002070002301095250, 6548719685561840296125, 247199273204273879989500
Offset: 0

Views

Author

Keywords

Comments

(2*n + 1)!!/a(n+1), n>=0, is the n-th approximant for William Brouncker's continued fraction for 4/Pi = 1 + 1^2/(2 + 3^2/(2 + 5^2/(2 + ... ))) See the C. Brezinski and J.-P. Delahaye references given under A142969 and A142970, respectively. The double factorials (2*n + 1)!! = A001147(n+1) enter. - Wolfdieter Lang, Oct 06 2008

Examples

			a(3) = (2*3 - 1)!! * Sum_{k=0..2} (-1)^k/(2k + 1) = 5!! * (1/(2*0 + 1) - 1/(2*1 + 1) + 1/(2*2 + 1)) = 5*3*1*(1/1 - 1/3 + 1/5) = 15 - 5 + 3 = 13. Notice that the first factor always cancels the common denominator of the sum. - _Michael B. Porter_, Jul 22 2016
		

References

  • A. E. Jolliffe, Continued Fractions, in Encyclopaedia Britannica, 11th ed., pp. 30-33; see p. 31.

Crossrefs

From Johannes W. Meijer, Nov 12 2009: (Start)
Cf. A007509 and A025547.
Equals first column of A167584.
Equals row sums of A167591.
Equals first right hand column of A167594.
(End)
Cf. A167576 and A135457.

Programs

  • Magma
    [0] cat [ n le 2 select (n) else 2*Self(n-1)+(2*n-3)^2*Self(n-2): n in [1..25] ]; // Vincenzo Librandi, Feb 17 2015
  • Maple
    a := proc(n) option remember; if n=0 then 0 elif n=1 then 1 else 2*a(n-1)+(2*n-3)^2* a(n-2) fi end: seq(a(n), n=0..20); # Peter Luschny, Nov 16 2016 after N. J. A. Sloane
  • Mathematica
    f[k_] := (2 k - 1) (-1)^(k + 1)
    t[n_] := Table[f[k], {k, 1, n}]
    a[n_] := SymmetricPolynomial[n - 1, t[n]]
    Table[a[n], {n, 1, 22}]    (* A024199 signed *)
    (* Clark Kimberling, Dec 30 2011 *)
    RecurrenceTable[{a[n+1] == 2*a[n] + (2*n-1)^2*a[n-1],a[0] == 0, a[1] == 1},a,{n,0,20}] (* Vaclav Kotesovec, Mar 18 2014 *)
    CoefficientList[Series[Pi/4/Sqrt[1-2*x] - 1/2*Log[2*x+Sqrt[4*x^2-1]]/Sqrt[2*x-1], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Mar 18 2014 *)

Formula

a(n) = s(1)s(2)...s(n)(1/s(1) - 1/s(2) + ... + c/s(n)) where c=(-1)^(n+1) and s(k) = 2k-1 for k = 1, 2, 3, ... (was previous definition). - Clark Kimberling
D-finite with recurrence a(0) = 0, a(1) = 1, a(n+1) = 2*a(n) + (2*n-1)^2*a(n-1). - N. J. A. Sloane, Jul 19 2002
a(n) + A024200(n) = A001147(n) = (2n-1)!!. - Max Alekseyev, Sep 23 2007
a(n)/A024200(n) -> Pi/(4-Pi) as n -> oo. - Max Alekseyev, Sep 23 2007
From Wolfdieter Lang, Oct 06 2008: (Start)
E.g.f. for a(n+1), n>=0: (sqrt(1-2*x)+arcsin(2*x)*sqrt(1+2*x)/2)/((1-4*x^2)^(1/2)*(1-2*x)). From the recurrence, solving (1-4*x^2)y''(x)-2*(8*x+1)*y'(x)-9*y=0 with inputs y(0)=1, y'(0)=2.
a(n+1) = A003148(n) + A143165(n), n>=0 (from the two terms of the e.g.f.). (End)
From Johannes W. Meijer, Nov 12 2009: (Start)
a(n) = (-1)^(n-1)*(2*n-3)!! + (2*n-1)*a(n-1) with a(0) = 0.
a(n) = (2*n-1)!!*sum((-1)^(k)/(2*k+1), k=0..n-1)
(End)
E.g.f.: Pi/4/sqrt(1-2*x) - 1/2*log(2*x+sqrt(4*x^2-1))/sqrt(2*x-1). - Vaclav Kotesovec, Mar 18 2014
a(n) ~ Pi * 2^(n-3/2) * n^n / exp(n). - Vaclav Kotesovec, Mar 18 2014
a(n) = (2*H(n+1/2)-Gamma(n+1/2))*2^(n-2)*sqrt(Pi) with H(x) the Hadamard factorial (see the link section). - Cyril Damamme, Jul 19 2015
a(n) = A135457(n) - (-1)^n A001147(n-1). - Cyril Damamme, Jul 19 2015
a(n) = (Pi + (-1)^n*(Psi(n/2 + 1/4) - Psi(n/2 + 3/4)))*Gamma(n+1/2)*2^(n-2)/sqrt(Pi). - Robert Israel, Jul 20 2015
a(n) = A167576(n) - A135457(n). - Cyril Damamme, Jul 22 2015
a(n)/A001147(n) -> Pi/4 as n -> oo. - Daniel Suteu, Jul 21 2016
From Peter Bala, Nov 15 2016: (Start)
Conjecture: a(n) = 1/2*Sum_{k = 0..2*n-1} (-1)^(n-k+1)*k!*(2*n - 2*k - 3)!!, where the double factorial of an odd integer (positive or negative) may be defined in terms of the gamma function as (2*N - 1)!! = 2^((N+1)/2)*Gamma(N/2 + 1)/sqrt(Pi).
E.g.f. 1/2*arcsin(2*x)/sqrt(1 - 2*x) = x + 2*x^2/2! + 13*x^3/3! + 76*x^4/4! + .... (End)

Extensions

Edited by N. J. A. Sloane, Jul 19 2002
New name from Cyril Damamme, Jul 19 2015

A167546 The ED1 array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 6, 12, 7, 1, 24, 48, 32, 10, 1, 120, 240, 160, 62, 13, 1, 720, 1440, 960, 384, 102, 16, 1, 5040, 10080, 6720, 2688, 762, 152, 19, 1, 40320, 80640, 53760, 21504, 6144, 1336, 212, 22, 1
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The coefficients in the upper right triangle of the ED1 array (m > n) were found with the a(n,m) formula while the coefficients in the lower left triangle of the ED1 array (m <= n) were found with the recurrence relation, see below. We use for the array rows the letter n (>= 1) and for the array columns the letter m (>= 1).
Our procedure for finding the coefficients in the lower left triangle can be compared with the procedure that De Smit and Lenstra used to fill in the hole in the middle of 'The Print Gallery' by M. C. Escher, see the links. In this lithograph Escher made use of the so-called Droste effect, hence we propose to call this square array of numbers the ED1 array.
For the ED2, ED3 and ED4 arrays see A167560, A167572 and A167584.

Examples

			The ED1 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1, 4, 7, 10, 13, 16, 19, 22, 25, 28
2, 12, 32, 62, 102, 152, 212, 282, 362, 452
6, 48, 160, 384, 762, 1336, 2148, 3240, 4654, 6432
24, 240, 960, 2688, 6144, 12264, 22200, 37320, 59208, 89664
120, 1440, 6720, 21504, 55296, 122880, 245640, 452880, 783144, 1285536
		

Crossrefs

A000012, A016777, 2*A005891, A167547, A167548 and A167549 equal the first sixth rows of the array.
A000142 equals the first column of the array.
A167550 equals the a(n, n+1) diagonal of the array.
A047053 equals the a(n, n) diagonal of the array.
A167558 equals the a(n+1, n) diagonal of the array.
A167551 equals the row sums of the ED1 array read by antidiagonals.
A167552 is a triangle related to the a(n) formulas of rows of the ED1 array.
A167556 is a triangle related to the GF(z) formulas of the rows of the ED1 array.
A167557 is the lower left triangle of the ED1 array.
Cf. A068424 (the (m-1)!/(m-n-1)! factor), A007680 (the (2*n-1)*(n-1)! factor).
Cf. A167560 (ED2 array), A167572 (ED3 array), A167584 (ED4 array).

Programs

  • Maple
    nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n-1+m-1)!/(2*m-2)! od; for m from n+1 to mmax do a(n,m):= (2*n-1)*(n-1)! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
  • Mathematica
    nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n - 1 + m - 1)!/(2*m - 2)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = (2*n - 1)*(n - 1)! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)

Formula

a(n,m) = (2*(m-1)!/(m-n-1)!)*Integral_{y>=0} sinh(y*(2*n-1))/cosh(y)^(2*m-1) for m > n.
The (n-1)-differences of the n-th array row lead to the recurrence relation
Sum_{k=0..n-1} (-1)^k*binomial(n-1,k)*a(n,m-k) = (2*n-1)*(n-1)!
which in its turn leads to, see also A167557,
a(n,m) = 4^(m-1)*(m-1)!*(n+m-2)!/(2*m-2)! for m <= n.
Showing 1-10 of 13 results. Next