A167591
A triangle related to the a(n) formulas of the rows of the ED4 array A167584.
Original entry on oeis.org
1, 4, -2, 12, -8, 9, 32, -16, 120, -60, 80, 0, 952, -768, 525, 192, 160, 5664, -5008, 12396, -5670, 448, 896, 27888, -20672, 162740, -133128, 72765, 1024, 3584, 120064, -46720, 1537216, -1562464, 2557296, -1081080, 2304, 12288, 467712, 76800
Offset: 1
Row 1: a(n) = 1.
Row 2: a(n) = 4*n - 2.
Row 3: a(n) = 12*n^2 - 8*n + 9.
Row 4: a(n) = 32*n^3 - 16*n^2 + 120*n - 60.
Row 5: a(n) = 80*n^4 + 0*n^3 + 952*n^2 - 768*n + 525.
Row 6: a(n) = 192*n^5 + 160*n^4 + 5664*n^3 - 5008*n^2 + 12396*n - 5670.
Row 7: a(n) = 448*n^6 + 896*n^5 + 27888*n^4 - 20672*n^3 + 162740*n^2 - 133128*n + 72765.
Row 8: a(n) = 1024*n^7 + 3584*n^6 + 120064*n^5 - 46720*n^4 + 1537216*n^3 - 1562464*n^2 + 2557296*n - 1081080.
Row 9: a(n) = 2304*n^8 + 12288*n^7 + 467712*n^6 + 76800*n^5 + 11589216*n^4 - 12058368*n^3 + 47963568*n^2 - 38278080*n + 18243225.
Row 10: a(n) = 5120*n^9 + 38400*n^8 + 1686528*n^7 + 1540608*n^6 + 73898880*n^5 - 66179520*n^4 + 631348672*n^3 - 669559008*n^2 + 869709780*n - 344594250.
A001193 equals the first right hand triangle column.
A167588
The second column of the ED4 array A167584.
Original entry on oeis.org
1, 6, 41, 372, 4077, 53106, 795645, 13536360, 257055705, 5400196830, 124170067665, 3104906420700, 83818724048325, 2431059231544650, 75354930324303525, 2486926158748693200, 87036225272850632625, 3220532233879435917750, 125594424461427237941625
Offset: 1
Equals the second column of the ED4 array
A167584.
-
Table[(1/2)*(-1)^(n)*(2*n - 3)!!*((n) + (4*n^2 - 1)*Sum[(-1)^(k + n)/(2*k + 1), {k, 0, n - 1}]), {n, 1, 50}] (* G. C. Greubel, Jun 17 2016 *)
A167589
The third column of the ED4 array A167584.
Original entry on oeis.org
1, 10, 93, 1020, 13269, 198990, 3383145, 64276920, 1349846505, 31046064210, 776157686325, 20956154152500, 607730434609725, 18839602224969750, 621707822126431425, 21759750056864358000, 805111392478121276625
Offset: 1
Equals the third column of the ED4 array
A167584.
-
Table[(1/8)*(-1)^(n)*(2*n - 5)!!*((4*n^3 - 11*n) + (16*n^4 - 40*n^2 + 9)*(Sum[(-1)^(k + n)/(2*k + 1), {k, 0, n - 1}])), {n, 1, 50}] (* G. C. Greubel, Jun 17 2016 *)
A167594
A triangle related to the GF(z) formulas of the rows of the ED4 array A167584.
Original entry on oeis.org
1, 2, 2, 9, 2, 13, 60, -12, 68, 76, 525, -300, 774, 132, 789, 5670, -5250, 11820, -3636, 6702, 7734, 72765, -92610, 212415, -143340, 143307, 19086, 110937, 1081080, -1746360, 4286520, -4246200, 4156200, -1204200, 1305000, 1528920
Offset: 1
Row 1: GF(z) = 1/(1-z).
Row 2: GF(z) = (2*z + 2)/(1-z)^2.
Row 3: GF(z) = (9*z^2 + 2*z + 13)/(1-z)^3.
Row 4: GF(z) = (60*z^3 - 12*z^2 + 68*z + 76)/(1-z)^4.
Row 5: GF(z) = (525*z^4 - 300*z^3 + 774*z^2 + 132*z + 789)/(1-z)^5.
Row 6: GF(z) = (5670*z^5 - 5250*z^4 + 11820*z^3 - 3636*z^2 + 6702*z + 7734)/(1-z)^6.
Row 7: GF(z) = (72765*z^6 - 92610*z^5 + 212415*z^4 - 143340*z^3 + 143307*z^2 + 19086*z + 110937)/ (1-z)^7.
Row 8: GF(z) = (1081080*z^7 - 1746360*z^6 + 4286520*z^5 - 4246200*z^4 + 4156200*z^3 - 1204200*z^2 + 1305000*z + 1528920)/(1-z)^8.
Row 9: GF(z) = (18243225*z^8 - 35675640*z^7 + 95176620*z^6 -121723560*z^5 + 132769350*z^4 - 73816200*z^3 + 45017100*z^2 + 4887720*z + 28018665) / (1-z)^9.
Row 10: GF(z) = (344594250*z^9 - 790539750*z^8 + 2299457160*z^7 - 3567314520*z^6 + 4441299660*z^5 - 3398138100*z^4 + 2160066600*z^3 - 550619640*z^2 + 421244730*z + 497895210)/(1-z)^10.
A001193 equals the first left hand column.
A024199 equals the first right hand column.
A167586
The fourth row of the ED4 array A167584.
Original entry on oeis.org
76, 372, 1020, 2212, 4140, 6996, 10972, 16260, 23052, 31540, 41916, 54372, 69100, 86292, 106140, 128836, 154572, 183540, 215932, 251940, 291756, 335572, 383580, 435972, 492940, 554676, 621372, 693220, 770412, 853140, 941596
Offset: 1
Equals the fourth row of the ED4 array
A167584.
-
LinearRecurrence[{4, -6, 4, -1}, {76, 372, 1020, 2212}, 100] (* G. C. Greubel, Jun 17 2016 *)
A167587
The fifth row of the ED4 array A167584: 80*n^4 + 952*n^2 - 768*n + 525.
Original entry on oeis.org
789, 4077, 13269, 33165, 70485, 133869, 233877, 382989, 595605, 888045, 1278549, 1787277, 2436309, 3249645, 4253205, 5474829, 6944277, 8693229, 10755285, 13165965, 15962709, 19184877, 22873749, 27072525, 31826325
Offset: 1
Equals the fifth row of the ED4 array
A167584.
-
[80*n^4+952*n^2-768*n+525: n in [1..35]]; // Vincenzo Librandi, Jul 21 2011, simplified by M. F. Hasler, Oct 08 2014
-
Table[80n^4+952n^2-768n+525,{n,30}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{789,4077,13269,33165,70485},30] (* Harvey P. Dale, Jul 21 2011 *)
-
a(n)=80*n^4+952*n^2-768*n+525 \\ M. F. Hasler, Oct 08 2014
A167590
The row sums of the ED4 array A167584 read by antidiagonals.
Original entry on oeis.org
1, 3, 20, 128, 1269, 13019, 179816, 2561280, 45580073, 831425459, 18116729724, 402900613376, 10389410535965
Offset: 1
A002866
a(0) = 1; for n > 0, a(n) = 2^(n-1)*n!.
Original entry on oeis.org
1, 1, 4, 24, 192, 1920, 23040, 322560, 5160960, 92897280, 1857945600, 40874803200, 980995276800, 25505877196800, 714164561510400, 21424936845312000, 685597979049984000, 23310331287699456000, 839171926357180416000, 31888533201572855808000, 1275541328062914232320000
Offset: 0
For the shoe lacing: with the notation introduced in A078602 the a(3-1) = 4 "straight" lacings for 3 pairs of eyelets are: 125346, 125436, 134526, 143526. Their mirror images 134256, 143256, 152346, 152436 are not counted.
a(3) = 24 because the 24 rotations of a three-dimensional cube fall into four distinct classes:
(i) the identity, which leaves everything fixed;
(ii) 9 rotations which leave the centers of two faces fixed, comprising rotations of 90, 180 and 270 degrees for each of 3 pairs of faces;
(iii) 6 rotations which leave the centers of two edges fixed, comprising rotations of 180 degrees for each of 6 pairs of edges;
(iv) 8 rotations which leave two vertices fixed, comprising rotations of 120 and 240 degrees for each of 4 pairs of vertices. For an n-cube, rotations can be more complex. For example, in 4 dimensions a rotation can either act in a single plane, such as the x-y plane, while leaving any vectors orthogonal to that plane unchanged, or it can act in two orthogonal planes, performing rotations in both and leaving no vectors fixed. In higher dimensions, there will be room for more planes and more choices as to the number of planes in which a given rotation acts.
- N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6, p. 257.
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.26)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..100
- Ofek Lauber Bonomo and Shlomi Reuveni, Occupancy correlations in the asymmetric simple inclusion process, arXiv:1905.02170 [cond-mat.stat-mech], 2019.
- J.-P. Bultel and A. Chouria, J.-G. Luque and O. Mallet, Word symmetric functions and the Redfield-Polya theorem, Accepted to FPSAC 2013, 2013; arXiv:1302.5815 [math.CO], 2013.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. 3 (2000), #00.1.5.
- Greg Egan, Hypercube Mathematical Details, 2007-2008.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: 2013 45th Southeastern Symposium on System Theory (SSST).
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 121.
- Victor Meally, Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.
- T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
- Norihiro Nakashima and Shuhei Tsujie, Enumeration of Flats of the Extended Catalan and Shi Arrangements with Species, arXiv:1904.09748 [math.CO], 2019.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014.
- OEIS Wiki, Sorting numbers.
- Hugo Pfoertner, Counting straight shoe lacings. FORTRAN program and results.
- Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math/0606404 [math.CO], 2007.
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, arXiv:math/0307064 [math.CO], 2003.
- N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, Order 21 (2004), 83-89.
- Index to divisibility sequences
- Index entries for sequences related to shoe lacings
- Index entries for related partition-counting sequences
-
See Pfoertner link.
-
[1] cat [2^(n-1)*Factorial(n): n in [1..25]]; // G. C. Greubel, Jun 13 2019
-
A002866 := n-> `if`(n=0,1,2^(n-1)*n!):
with(combstruct); SeqSeqL := [S, {S=Sequence(U,card >= 1), U=Sequence(Z,card >=1)},labeled];
seq(ceil(count(Subset(n))*count(Permutation(n))/2),n=0..17); # Zerinvary Lajos, Oct 16 2006
G(x):=(1-x)/(1-2*x): f[0]:=G(x): for n from 1 to 26 do f[n]:=diff(f[n-1],x) od:x:=0:seq(f[n],n=0..17); # Zerinvary Lajos, Apr 04 2009
-
Join[{1},Table[2^(n-1) n!,{n,25}]] (* Harvey P. Dale, Sep 27 2013 *)
a[n_] := (-1)^n Hypergeometric2F1Regularized[1, -n, 2 - n, 2];
Table[a[n], {n, 0, 20}] (* Peter Luschny, Apr 26 2024 *)
-
a(n)=if(n,n!<<(n-1),1) \\ Charles R Greathouse IV, Jan 13 2012
-
a(n) = if(n == 0, 1, 2^(n-1)*n!);
vector(25, n, a(n-1)) \\ Altug Alkan, Oct 18 2015
-
[1] + [2^(n-1)*factorial(n) for n in (1..25)] # G. C. Greubel, Jun 13 2019
A024199
a(n) = (2n-1)!! * Sum_{k=0..n-1}(-1)^k/(2k+1).
Original entry on oeis.org
0, 1, 2, 13, 76, 789, 7734, 110937, 1528920, 28018665, 497895210, 11110528485, 241792844580, 6361055257725, 163842638377950, 4964894559637425, 147721447995130800, 5066706567801827025, 171002070002301095250, 6548719685561840296125, 247199273204273879989500
Offset: 0
a(3) = (2*3 - 1)!! * Sum_{k=0..2} (-1)^k/(2k + 1) = 5!! * (1/(2*0 + 1) - 1/(2*1 + 1) + 1/(2*2 + 1)) = 5*3*1*(1/1 - 1/3 + 1/5) = 15 - 5 + 3 = 13. Notice that the first factor always cancels the common denominator of the sum. - _Michael B. Porter_, Jul 22 2016
- A. E. Jolliffe, Continued Fractions, in Encyclopaedia Britannica, 11th ed., pp. 30-33; see p. 31.
Equals first right hand column of
A167594.
(End)
-
[0] cat [ n le 2 select (n) else 2*Self(n-1)+(2*n-3)^2*Self(n-2): n in [1..25] ]; // Vincenzo Librandi, Feb 17 2015
-
a := proc(n) option remember; if n=0 then 0 elif n=1 then 1 else 2*a(n-1)+(2*n-3)^2* a(n-2) fi end: seq(a(n), n=0..20); # Peter Luschny, Nov 16 2016 after N. J. A. Sloane
-
f[k_] := (2 k - 1) (-1)^(k + 1)
t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 22}] (* A024199 signed *)
(* Clark Kimberling, Dec 30 2011 *)
RecurrenceTable[{a[n+1] == 2*a[n] + (2*n-1)^2*a[n-1],a[0] == 0, a[1] == 1},a,{n,0,20}] (* Vaclav Kotesovec, Mar 18 2014 *)
CoefficientList[Series[Pi/4/Sqrt[1-2*x] - 1/2*Log[2*x+Sqrt[4*x^2-1]]/Sqrt[2*x-1], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Mar 18 2014 *)
A167546
The ED1 array read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 2, 4, 1, 6, 12, 7, 1, 24, 48, 32, 10, 1, 120, 240, 160, 62, 13, 1, 720, 1440, 960, 384, 102, 16, 1, 5040, 10080, 6720, 2688, 762, 152, 19, 1, 40320, 80640, 53760, 21504, 6144, 1336, 212, 22, 1
Offset: 1
The ED1 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1, 4, 7, 10, 13, 16, 19, 22, 25, 28
2, 12, 32, 62, 102, 152, 212, 282, 362, 452
6, 48, 160, 384, 762, 1336, 2148, 3240, 4654, 6432
24, 240, 960, 2688, 6144, 12264, 22200, 37320, 59208, 89664
120, 1440, 6720, 21504, 55296, 122880, 245640, 452880, 783144, 1285536
- B. de Smit and H.W. Lenstra, The Mathematical Structure of Escher's Print Gallery, Notices of the AMS, Volume 50, Number 4, pp. 446-457, April 2003.
- Johannes W. Meijer, The four Escher-Droste arrays, jpg image, Mar 08 2013.
- A. Ryabov, P. Chvosta, Tracer dynamics in a single-file system with absorbing boundary, arXiv preprint arXiv:1402.1949 [cond-mat.stat-mech], 2014.
A000142 equals the first column of the array.
A167550 equals the a(n, n+1) diagonal of the array.
A047053 equals the a(n, n) diagonal of the array.
A167558 equals the a(n+1, n) diagonal of the array.
A167551 equals the row sums of the ED1 array read by antidiagonals.
A167552 is a triangle related to the a(n) formulas of rows of the ED1 array.
A167556 is a triangle related to the GF(z) formulas of the rows of the ED1 array.
A167557 is the lower left triangle of the ED1 array.
Cf.
A068424 (the (m-1)!/(m-n-1)! factor),
A007680 (the (2*n-1)*(n-1)! factor).
-
nmax:=10; mmax:=10; for n from 1 to nmax do for m from 1 to n do a(n,m) := 4^(m-1)*(m-1)!*(n-1+m-1)!/(2*m-2)! od; for m from n+1 to mmax do a(n,m):= (2*n-1)*(n-1)! + sum((-1)^(k-1)*binomial(n-1,k)*a(n,m-k),k=1..n-1) od; od: for n from 1 to nmax do for m from 1 to n do d(n,m):=a(n-m+1,m) od: od: T:=1: for n from 1 to nmax do for m from 1 to n do a(T):= d(n,m): T:=T+1: od: od: seq(a(n),n=1..T-1);
-
nmax = 10; mmax = 10; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[n, m] = 4^(m - 1)*(m - 1)!*((n - 1 + m - 1)!/(2*m - 2)!)]; For[m = n + 1, m <= mmax, m++, a[n, m] = (2*n - 1)*(n - 1)! + Sum[(-1)^(k - 1)*Binomial[n - 1, k]*a[n, m - k], {k, 1, n - 1}]]; ]; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, d[n, m] = a[n - m + 1, m]]; ]; t = 1; For[n = 1, n <= nmax, n++, For[m = 1, m <= n, m++, a[t] = d[n, m]; t = t + 1]]; Table[a[n], {n, 1, t - 1}] (* Jean-François Alcover, Dec 20 2011, translated from Maple *)
Showing 1-10 of 13 results.
Comments