A000407
a(n) = (2*n+1)! / n!.
Original entry on oeis.org
1, 6, 60, 840, 15120, 332640, 8648640, 259459200, 8821612800, 335221286400, 14079294028800, 647647525324800, 32382376266240000, 1748648318376960000, 101421602465863680000, 6288139352883548160000, 415017197290314178560000
Offset: 0
G.f. = 1 + 6*x + 60*x^2 + 840*x^3 + 15120*x^4 + 332640*x^5 + 8648640*x^6 + ...
For n=1 the a(1)=6 ways for 2 people to line up in 2 queues are as follows: Q1<P1,P2> Q2<>, Q1<P2,P1> Q2<>, Q1<P1> Q2<P2>, Q1<P2> Q2<P1>, Q1<> Q2<P1,P2>, Q1<> Q2<P2,P1>. - _Dennis P. Walsh_, Mar 24 2016
For the unique maximal outerplanar graph with 4 vertices, there are C(4,2)=6 ways to label the two degree 3 vertices, and the other two labels are forced. Thus a(1) = 6.
- L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted with a slightly different title in Math. Annalen, 191 (1971), 87-98.
- L. B. W. Jolley, Summation of Series, Dover, 1961.
- Loren C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 0..100
- L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970, pp. 12-26. Reprinted with a slightly different title in Math. Annalen, Vol. 191 (1971), pp. 87-98.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Peter J. Cameron, Sequences Realized by Oligomorphic Permutation Groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- G. Hu, Catalan number and enumeration of maximal outerplanar graphs, Tsinghua Science and Technology 25 5 1 (2000), 109-114.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 139.
- Loren C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181. [Annotated scan of pages 180 and 181 only]
- Dan Levy and Lior Pachter, The Neighbor-Net Algorithm, arXiv:math/0702515 [math.CO], 2007-2008.
- Lee A. Newberg, The Number of Clone Orderings, Discrete Applied Mathematics, Vol. 69, No. 3 (1996), pp. 233-245.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
- Robert W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
- Herbert E. Salzer, Coefficients for expressing the first thirty powers in terms of the Hermite polynomials, Math. Comp., Vol. 3, No. 23 (1948), pp. 167-169.
- Herbert E. Salzer, Orthogonal polynomials arising in the evaluation of inverse Laplace transforms, Math. Comp. Vol. 9, No. 52 (1955), pp. 164-177.
- Herbert E. Salzer, Orthogonal polynomials arising in the evaluation of inverse Laplace transforms, Math. Comp., Vol. 9, No. 52 (1955), 164-177. [Annotated scanned copy]
- Maxie D. Schmidt, Generalized j-Factorial Functions, Polynomials, and Applications , J. Int. Seq., Vol. 13 (2010), Article 10.6.7, page 39.
- Wikipedia, William Brouncker, 2nd Viscount Brouncker.
- Index to divisibility sequences
- Index entries for sequences related to factorial numbers
A100622 is the "Number of topologically distinct solutions to the clone ordering problem for n clones" without the restriction that they be in a single contig (see [Newberg] for definition of contig).
-
[Factorial(2*n+1) / Factorial(n): n in [0..20]]; // Vincenzo Librandi, Jun 16 2015
-
For Maple program see A000903.
a := n -> pochhammer(n+1,n+1); (for n>=0) # Peter Luschny, Feb 14 2009
-
Table[(2n + 1)!/n!, {n, 0, 30}] (* Stefan Steinerberger, Apr 08 2006 *)
a[ n_] := If[ n < 0, 1/2, 1] Pochhammer[ n + 1, n + 1]; (* Michael Somos, Jan 03 2015 *)
a[ n_] := Which[ n < -1, -(-1)^n / (4 a[-n - 2]), n == -1, 1/2, True, (2 n + 1)! / n!]; (* Michael Somos, Jan 03 2015 *)
-
A000407(n):=(2*n+1)!/n!$
makelist(A000407(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
-
a(n)=(2*n+1)!/n! \\ Charles R Greathouse IV, Jan 12 2012
-
{a(n) = if( n<-1, -(-1)^n / (4 * a(-n-2)), n==-1, 1/2, (2*n + 1)! / n!)}; /* Michael Somos, Jan 03 2015 */
A004041
Scaled sums of odd reciprocals: a(n) = (2*n + 1)!!*(Sum_{k=0..n} 1/(2*k + 1)).
Original entry on oeis.org
1, 4, 23, 176, 1689, 19524, 264207, 4098240, 71697105, 1396704420, 29985521895, 703416314160, 17901641997225, 491250187505700, 14459713484342175, 454441401368236800, 15188465029114325025, 537928935889764226500
Offset: 0
Joe Keane (jgk(AT)jgk.org)
(arctanh(x))^2 = x^2 + 2/3*x^4 + 23/45*x^6 + 44/105*x^8 + ...
Equals second left hand column of
A028338 triangle.
Equals second right hand column of
A109692 triangle.
Equals second left hand column of
A161198 triangle divided by 2.
(End)
-
Table[(-1)^(n + 1)* Sum[(-2)^(n - k) k (-1)^(n - k) StirlingS1[n + 1, k + 1], {k, 0, n}], {n, 1, 18}] (* Zerinvary Lajos, Jul 08 2009 *)
FunctionExpand@Table[(2 n + 1)!! (Log[4] + HarmonicNumber[n + 1/2])/2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 13 2016 *)
A167584
The ED4 array read by antidiagonals.
Original entry on oeis.org
1, 2, 1, 13, 6, 1, 76, 41, 10, 1, 789, 372, 93, 14, 1, 7734, 4077, 1020, 169, 18, 1, 110937, 53106, 13269, 2212, 269, 22, 1, 1528920, 795645, 198990, 33165, 4140, 393, 26, 1, 28018665, 13536360, 3383145, 563850, 70485, 6996, 541, 30, 1
Offset: 1
The ED4 array begins with:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2, 6, 10, 14, 18, 22, 26, 30, 34, 38
13, 41, 93, 169, 269, 393, 541, 713, 909, 1129
76, 372, 1020, 2212, 4140, 6996, 10972, 16260, 23052, 31540
789, 4077, 13269, 33165, 70485, 133869, 233877, 382989, 595605, 888045
7734, 53106, 198990, 563850, 1339110, 2812194, 5389566, 9619770, 16216470, 26081490
...
From _Peter Bala_, Nov 06 2016: (Start)
Table extended to nonpositive values of m:
n\m| -4 -3 -2 -1 0
-----------------------------------
0 | 0 0 0 0 0
1 | 1 1 1 1 1
2 | -18 -14 -10 -6 -2
3 | 233 141 73 29 9
4 | -2844 -1428 -620 -228 -60
5 | 39309 17877 7149 2325 525
...
Column 0: (-1)^(n+1)*(2*n - 3)!!*n. See A001193;
Column -1: (-1)^n*(2*n - 5)!!/3!!*n*(7 - 4*n^2);
Column -2: (-1)^n*(2*n - 7)!!/5!!*n(-149 + 120*n^2 - 16*n^4);
Column -3: (-1)^n*(2*n - 9)!!/7!!*n*(6483 - 6076*n^2 + 1232*n^4 - 64*n^6);
Column -4: (-1)^n*(2*n - 11)!!/9!!*n*(-477801 + 489136*n^2 - 120288*n^4 + 9984*n^6 - 256*n^8). (End)
A167590 equals the row sums of the ED4 array read by antidiagonals.
A167591 is a triangle related to the a(n) formulas of the rows of the ED4 array.
A167594 is a triangle related to the GF(z) formulas of the rows of the ED4 array.
Cf.
A002866 (the 2^(n-1)*n! factor).
-
T := proc (n, m) option remember;
if n = 0 then 0
elif n = 1 then 1
else (4*m-2)*T(n-1,m)+(2*n+2*m-5)*(2*n-2*m-1)*T(n-2,m)
end if;
end proc:
#square array read by antidiagonals
seq(seq(T(n-m,m), m = 1..n-1), n = 1..10);
# Peter Bala, Nov 06 2016
-
T[0, k_] := 0; T[1, k_] := 1; T[n_, k_] := T[n, k] = (4*k - 2)*T[n - 1, k] + (2*n + 2*k - 5)*(2*n - 2*k - 1)*T[n - 2, k]; Table[T[n - k, k], {n, 2, 12}, {k, 1, n - 1}] (* G. C. Greubel, Jan 20 2017 *)
A007509
Numerator of Sum_{k=0..n} (-1)^k/(2*k+1).
Original entry on oeis.org
1, 2, 13, 76, 263, 2578, 36979, 33976, 622637, 11064338, 11757173, 255865444, 1346255081, 3852854518, 116752370597, 3473755390832, 3610501179557, 3481569435902, 133330680156299, 129049485078524, 5457995496252709, 227848175409504262, 234389556075339277
Offset: 0
1/1, 2/3, 13/15, 76/105, 263/315, 2578/3465, 36979/45045, 33976/45045, 622637/765765, ...
- P. Beckmann, A History of Pi. Golem Press, Boulder, CO, 2nd ed., 1971, p. 131.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Cf.
A142969 for the numerators of Brouncker's continued fraction of 4/Pi - 1.
-
[Numerator(&+[(-1)^k/(2*k+1):k in [0..n]]): n in [0..23]]; // Marius A. Burtea, Aug 26 2019
-
A007509 := n->numer(add((-1)^k/(2*k+1),k=0..n));
-
Table[Numerator[FunctionExpand[(Pi + (-1)^n(HarmonicNumber[n/2 + 1/4] - HarmonicNumber[n/2 - 1/4]))/4]], {n, 0, 20}] (* Vladimir Reshetnikov, Jan 18 2011 *)
Numerator[Table[Sum[(-1)^k/(2k+1),{k,0,n}],{n,0,30}]] (* Harvey P. Dale, Oct 22 2011 *)
Table[(-1)^k/(2k+1),{k,0,30}]//Accumulate//Numerator (* Harvey P. Dale, May 03 2019 *)
A167591
A triangle related to the a(n) formulas of the rows of the ED4 array A167584.
Original entry on oeis.org
1, 4, -2, 12, -8, 9, 32, -16, 120, -60, 80, 0, 952, -768, 525, 192, 160, 5664, -5008, 12396, -5670, 448, 896, 27888, -20672, 162740, -133128, 72765, 1024, 3584, 120064, -46720, 1537216, -1562464, 2557296, -1081080, 2304, 12288, 467712, 76800
Offset: 1
Row 1: a(n) = 1.
Row 2: a(n) = 4*n - 2.
Row 3: a(n) = 12*n^2 - 8*n + 9.
Row 4: a(n) = 32*n^3 - 16*n^2 + 120*n - 60.
Row 5: a(n) = 80*n^4 + 0*n^3 + 952*n^2 - 768*n + 525.
Row 6: a(n) = 192*n^5 + 160*n^4 + 5664*n^3 - 5008*n^2 + 12396*n - 5670.
Row 7: a(n) = 448*n^6 + 896*n^5 + 27888*n^4 - 20672*n^3 + 162740*n^2 - 133128*n + 72765.
Row 8: a(n) = 1024*n^7 + 3584*n^6 + 120064*n^5 - 46720*n^4 + 1537216*n^3 - 1562464*n^2 + 2557296*n - 1081080.
Row 9: a(n) = 2304*n^8 + 12288*n^7 + 467712*n^6 + 76800*n^5 + 11589216*n^4 - 12058368*n^3 + 47963568*n^2 - 38278080*n + 18243225.
Row 10: a(n) = 5120*n^9 + 38400*n^8 + 1686528*n^7 + 1540608*n^6 + 73898880*n^5 - 66179520*n^4 + 631348672*n^3 - 669559008*n^2 + 869709780*n - 344594250.
A001193 equals the first right hand triangle column.
A167576
The first column of the ED3 array A167572.
Original entry on oeis.org
1, 5, 23, 167, 1473, 16413, 211479, 3192975, 54010305, 1030249845, 21566327895, 497334999735, 12405876372225, 335591130336525, 9716331072597975, 301633179343890975, 9941514351641143425, 348336799875365041125
Offset: 1
G.f. = x + 5*x^2 + 23*x^3 + 167*x^4 + 1473*x^5 + 16413*x^6 + ...
Equals the first column of the ED3 array
A167572.
Equals the first right hand column of
A167583.
Cf.
A097801 (the 2*(-1)^n*(2*n-5)!! factor).
Cf.
A007509 and
A025547 (the sum((-1)^(k+n)/(2*k+1), k=0..n-1) factor).
-
L := x -> (1+x*(Psi(1-x/2)-Psi(1/2-x/2)))/(-x)!:
a := x -> (L(x-1/2)-(x-1/2)!)*2^(x-1)*sqrt(Pi):
seq(simplify(a(n)),n=1..18); # Peter Luschny, Jul 18 2015
a := proc(n) option remember: if n=1 then 1 else (2*n-1)*a(n-1)+2*(-1)^n*doublefactorial(2*n-5) fi: end: seq(a(n),n=1..18); # Johannes W. Meijer, Jul 20 2015
-
a[ n_] := If[ n < 1, 0, (2 n - 3)!! ((-1)^n - I (4 n - 2) Sum[ I^k / k, {k, 1, 2 n - 1, 2}])]; (* Michael Somos, Jul 20 2015 *)
a[ n_] := If[ n < 1, 0, (2 n - 3)!! ((-1)^n + (4 n - 2) Sum[ KroneckerSymbol[ -4, k]/ k, {k, 2 n - 1}])]; (* Michael Somos, Jan 31 2019 *)
-
{a(n) = if( n<1, 0, prod(k=1, n-1, 2*k - 1) * ((-1)^n - (4*n - 2) * sum(k=1, n, (-1)^k / (2*k - 1))))}; /* Michael Somos, Jul 20 2015 */
A024200
a(0) = 1, a(1) = 0, a(n+1) = 2*a(n) + (2*n-1)^2*a(n-1).
Original entry on oeis.org
1, 0, 1, 2, 29, 156, 2661, 24198, 498105, 6440760, 156833865, 2638782090, 74441298645, 1544798322900, 49615408298925, 1225388793991950, 44177335967379825, 1265953302961023600, 50641025474398676625, 1652074847076051263250, 72631713568603890826125, 2658069269539881753055500
Offset: 0
- A. E. Jolliffe, Continued Fractions, in Encyclopaedia Britannica, 11th ed., pp. 30-33; see p. 31.
-
CoefficientList[Series[(1-Pi/4)/Sqrt[1-2*x] + 1/2*Log[2*x+Sqrt[4*x^2-1]]/Sqrt[2*x-1], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Mar 18 2014 *)
RecurrenceTable[{a[n+1] == 2*a[n] + (2*n-1)^2*a[n-1],a[0] == 1, a[1] == 0},a,{n,0,20}] (* Vaclav Kotesovec, Mar 18 2014 *)
nxt[{n_,a_,b_}]:={n+1,b,2b+a (2n-1)^2}; NestList[nxt,{1,1,0},30][[;;,2]] (* Harvey P. Dale, Dec 21 2024 *)
A167588
The second column of the ED4 array A167584.
Original entry on oeis.org
1, 6, 41, 372, 4077, 53106, 795645, 13536360, 257055705, 5400196830, 124170067665, 3104906420700, 83818724048325, 2431059231544650, 75354930324303525, 2486926158748693200, 87036225272850632625, 3220532233879435917750, 125594424461427237941625
Offset: 1
Equals the second column of the ED4 array
A167584.
-
Table[(1/2)*(-1)^(n)*(2*n - 3)!!*((n) + (4*n^2 - 1)*Sum[(-1)^(k + n)/(2*k + 1), {k, 0, n - 1}]), {n, 1, 50}] (* G. C. Greubel, Jun 17 2016 *)
A167589
The third column of the ED4 array A167584.
Original entry on oeis.org
1, 10, 93, 1020, 13269, 198990, 3383145, 64276920, 1349846505, 31046064210, 776157686325, 20956154152500, 607730434609725, 18839602224969750, 621707822126431425, 21759750056864358000, 805111392478121276625
Offset: 1
Equals the third column of the ED4 array
A167584.
-
Table[(1/8)*(-1)^(n)*(2*n - 5)!!*((4*n^3 - 11*n) + (16*n^4 - 40*n^2 + 9)*(Sum[(-1)^(k + n)/(2*k + 1), {k, 0, n - 1}])), {n, 1, 50}] (* G. C. Greubel, Jun 17 2016 *)
A167594
A triangle related to the GF(z) formulas of the rows of the ED4 array A167584.
Original entry on oeis.org
1, 2, 2, 9, 2, 13, 60, -12, 68, 76, 525, -300, 774, 132, 789, 5670, -5250, 11820, -3636, 6702, 7734, 72765, -92610, 212415, -143340, 143307, 19086, 110937, 1081080, -1746360, 4286520, -4246200, 4156200, -1204200, 1305000, 1528920
Offset: 1
Row 1: GF(z) = 1/(1-z).
Row 2: GF(z) = (2*z + 2)/(1-z)^2.
Row 3: GF(z) = (9*z^2 + 2*z + 13)/(1-z)^3.
Row 4: GF(z) = (60*z^3 - 12*z^2 + 68*z + 76)/(1-z)^4.
Row 5: GF(z) = (525*z^4 - 300*z^3 + 774*z^2 + 132*z + 789)/(1-z)^5.
Row 6: GF(z) = (5670*z^5 - 5250*z^4 + 11820*z^3 - 3636*z^2 + 6702*z + 7734)/(1-z)^6.
Row 7: GF(z) = (72765*z^6 - 92610*z^5 + 212415*z^4 - 143340*z^3 + 143307*z^2 + 19086*z + 110937)/ (1-z)^7.
Row 8: GF(z) = (1081080*z^7 - 1746360*z^6 + 4286520*z^5 - 4246200*z^4 + 4156200*z^3 - 1204200*z^2 + 1305000*z + 1528920)/(1-z)^8.
Row 9: GF(z) = (18243225*z^8 - 35675640*z^7 + 95176620*z^6 -121723560*z^5 + 132769350*z^4 - 73816200*z^3 + 45017100*z^2 + 4887720*z + 28018665) / (1-z)^9.
Row 10: GF(z) = (344594250*z^9 - 790539750*z^8 + 2299457160*z^7 - 3567314520*z^6 + 4441299660*z^5 - 3398138100*z^4 + 2160066600*z^3 - 550619640*z^2 + 421244730*z + 497895210)/(1-z)^10.
A001193 equals the first left hand column.
A024199 equals the first right hand column.
Showing 1-10 of 19 results.
Comments