cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A000407 a(n) = (2*n+1)! / n!.

Original entry on oeis.org

1, 6, 60, 840, 15120, 332640, 8648640, 259459200, 8821612800, 335221286400, 14079294028800, 647647525324800, 32382376266240000, 1748648318376960000, 101421602465863680000, 6288139352883548160000, 415017197290314178560000
Offset: 0

Views

Author

Keywords

Comments

The e.g.f. of 1/a(n) = n!/(2*n+1)! is (exp(sqrt(x)) - exp(-sqrt(x)))/(2*sqrt(x)). - Wolfdieter Lang, Jan 09 2012
Product of the larger parts of the partitions of 2n+2 into exactly two parts. - Wesley Ivan Hurt, Jun 15 2013
For n > 0, a(n-1) = (2n-1)!/(n-1)!, the number of ways n people can line up in n labeled queues. The derivation is straightforward. Person 1 has (2n-1) choices - be first in line in one of the queues or get behind one of the other people. Person 2 has (2n-2) choices - choose one of the n queues or get behind one of the remaining n-2 people. Continuing in this fashion, we finally find that person n has to choose one of the n queues. - Dennis P. Walsh, Mar 24 2016
For n > 0, a(n-1) is the number of functions f:[n]->[2n] that are acyclic and injective. Note that f is acyclic if, for all x in [n], x is not a member of the set {f(x),f(f(x)), f(f(f(x))), ...}. - Dennis P. Walsh, Mar 25 2016
a(n) is the number of labeled maximal outerplanar graphs with n-3 vertices. - Allan Bickle, Feb 19 2024

Examples

			G.f. = 1 + 6*x + 60*x^2 + 840*x^3 + 15120*x^4 + 332640*x^5 + 8648640*x^6 + ...
For n=1 the a(1)=6 ways for 2 people to line up in 2 queues are as follows: Q1<P1,P2> Q2<>, Q1<P2,P1> Q2<>, Q1<P1> Q2<P2>, Q1<P2> Q2<P1>, Q1<> Q2<P1,P2>, Q1<> Q2<P2,P1>. - _Dennis P. Walsh_, Mar 24 2016
For the unique maximal outerplanar graph with 4 vertices, there are C(4,2)=6 ways to label the two degree 3 vertices, and the other two labels are forced.  Thus a(1) = 6.
		

References

  • L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted with a slightly different title in Math. Annalen, 191 (1971), 87-98.
  • L. B. W. Jolley, Summation of Series, Dover, 1961.
  • Loren C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A100622 is the "Number of topologically distinct solutions to the clone ordering problem for n clones" without the restriction that they be in a single contig (see [Newberg] for definition of contig).
Column m=0 of A292219.

Programs

  • Magma
    [Factorial(2*n+1) / Factorial(n): n in [0..20]]; // Vincenzo Librandi, Jun 16 2015
  • Maple
    For Maple program see A000903.
    a := n -> pochhammer(n+1,n+1); (for n>=0) # Peter Luschny, Feb 14 2009
  • Mathematica
    Table[(2n + 1)!/n!, {n, 0, 30}] (* Stefan Steinerberger, Apr 08 2006 *)
    a[ n_] := If[ n < 0, 1/2, 1] Pochhammer[ n + 1, n + 1]; (* Michael Somos, Jan 03 2015 *)
    a[ n_] := Which[ n < -1, -(-1)^n / (4 a[-n - 2]), n == -1, 1/2, True, (2 n + 1)! / n!]; (* Michael Somos, Jan 03 2015 *)
  • Maxima
    A000407(n):=(2*n+1)!/n!$
    makelist(A000407(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=(2*n+1)!/n! \\ Charles R Greathouse IV, Jan 12 2012
    
  • PARI
    {a(n) = if( n<-1, -(-1)^n / (4 * a(-n-2)), n==-1, 1/2, (2*n + 1)! / n!)}; /* Michael Somos, Jan 03 2015 */
    

Formula

E.g.f.: (1 - 4*x)^(-3/2). - Michael Somos, Jan 03 2015
E.g.f.: Sum_{k>=0} a(k+2) * x^k / k! = (1 - 2*x - sqrt(1 - 4*x)) / 4.
E.g.f. for a(n-1), n >= 0, with a(-1) := 0 is (-1+1/(1-4*x)^(1/2))/2. 2*a(n) = (4*n+2)(!^4) := Product_{j=0..n} (4*j + 2), (one half of 4-factorial numbers). - Wolfdieter Lang
a(n) = C(n+1)*(n+2)!/2 for all n>=0. - Paul Barry, Feb 16 2005
For n>1, a(n) = (1/2)*A001813(n+1). - Zerinvary Lajos, Jun 06 2007
For asymptotics see the Robinson paper.
Sum_{n >=0} n!/a(n) = 2*Pi/3^(3/2) = 1.2091995761... = A248897 [Jolley eq 261]
G.f.: 1 / (1 - 6*x / (1 - 4*x / (1 - 10*x / (1 - 8*x / (1 - 14*x / ... ))))). - Michael Somos, May 12 2012
G.f.: 1/Q(0), where Q(k) = 1 + 2*(2*k-1)*x - 4*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 2*x/(2*x + 1/(2*k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 02 2013
a(n) = -(-1)^n / (4 * a(-2-n)) = a(n-1) * (4*n+2) for all n in Z. - Michael Somos, Jan 03 2015
a(n) = A087299(2*n + 1). - Michael Somos, Jan 03 2015
From Peter Bala, Feb 16 2015: (Start)
Recurrence equation: a(n) = 4*a(n-1) + 4*(2*n - 1)^2*a(n-2) with a(0) = 1 and a(1) = 6.
The integer sequence b(n) := a(n)*Sum_{k = 0..n} (-1)^k/(2*k + 1), beginning [1, 4, 52, 608, 12624, ...], satisfies the same second-order recurrence equation. This leads to Brouncker's generalized continued fraction expansion Sum_{k >= 0} (-1)^k/(2*k + 1) = Pi/4 = 1/(1 + 1^2/(2 + 3^2/(2 + 5^2/(2 + ... )))). Note b(n) = 2^n*A024199(n+1).
Recurrence equation: a(n) = (5*n + 2)*a(n-1) - 2*n*(2*n - 1)^2*a(n-2) with a(0) = 1 and a(1) = 6.
The integer sequence c(n) := a(n)*Sum_{k = 0..n} k!^2/(2*k + 1)!, beginning [1, 7, 72, 1014, 18276, ... ], satisfies the same second-order recurrence equation. This leads to the generalized continued fraction expansion Sum_{k >= 0} k!^2/(2*k + 1)! = 2*Pi/sqrt(27) = 2*A073010 = 1/(1 - 1/(7 - 12/(12 - 30/(17 - ... - 2*n*(2*n - 1)/((5*n + 2) - ... ))))). (End)
a(n) = Product_{k=n+1..(2*n+1)} k. - Carlos Eduardo Olivieri, Jun 03 2015
From Ilya Gutkovskiy, Jan 17 2017: (Start)
a(n) ~ 2^(2*n+3/2)*n^(n+1)/exp(n).
Sum_{n>=0} 1/a(n) = exp(1/4)*sqrt(Pi)*erf(1/2) = 1.184593072938653151..., where erf() is the error function. (End)
Sum_{n>=0} (-1)^n/a(n) = exp(-1/4)*sqrt(Pi)*erfi(1/2), where erfi() is the imaginary error function. - Amiram Eldar, Jan 18 2021
It follows from the comments above that we have a(n) = a(n-1)*(4*n+2), with a(1) = 6, a(0) = 1.
a(n) = A081125(2*n+1). - R. J. Mathar, Jun 07 2025

A004041 Scaled sums of odd reciprocals: a(n) = (2*n + 1)!!*(Sum_{k=0..n} 1/(2*k + 1)).

Original entry on oeis.org

1, 4, 23, 176, 1689, 19524, 264207, 4098240, 71697105, 1396704420, 29985521895, 703416314160, 17901641997225, 491250187505700, 14459713484342175, 454441401368236800, 15188465029114325025, 537928935889764226500
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

n-th elementary symmetric function of the first n+1 odd positive integers.
Also the determinant of the n X n matrix given by m(i,j) = 2*i + 2 = if i = j and otherwise 1. For example, Det[{{4, 1, 1, 1, 1, 1}, {1, 6, 1, 1, 1, 1}, {1, 1, 8, 1, 1, 1}, {1, 1, 1, 10, 1, 1}, {1, 1, 1, 1, 12, 1}, {1, 1, 1, 1, 1, 14}}] = 264207 = a(6). - John M. Campbell, May 20 2011

Examples

			(arctanh(x))^2 = x^2 + 2/3*x^4 + 23/45*x^6 + 44/105*x^8 + ...
		

Crossrefs

Cf. A002428.
From Johannes W. Meijer, Jun 08 2009: (Start)
Equals second left hand column of A028338 triangle.
Equals second right hand column of A109692 triangle.
Equals second left hand column of A161198 triangle divided by 2.
(End)

Programs

  • Mathematica
    Table[(-1)^(n + 1)* Sum[(-2)^(n - k) k (-1)^(n - k) StirlingS1[n + 1, k + 1], {k, 0, n}], {n, 1, 18}] (* Zerinvary Lajos, Jul 08 2009 *)
    FunctionExpand@Table[(2 n + 1)!! (Log[4] + HarmonicNumber[n + 1/2])/2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 13 2016 *)

Formula

a(n) = (2*n + 1)!!*(Sum_{k=0..n} 1/(2*k + 1)).
a(n) is coefficient of x^(2*n+2) in (arctanh x)^2, multiplied by (n + 1)*(2*n + 1)!!.
a(n) = Sum_{i=k+1..n} (-1)^(k+1-i)*2^(n-1)*binomial(i-1, k)*s1(n, i) with k = 1, where s1(n, i) are unsigned Stirling numbers of the first kind. - Victor Adamchik (adamchik(AT)ux10.sp.cs.cmu.edu), Jan 23 2001
a(n) ~ 2^(1/2)*log(n)*n*(2n/e)^n. - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
E.g.f.: 1/2*(1 - 2*x)^(-3/2)*(2 - log(1 - 2*x)). - Vladeta Jovovic, Feb 19 2003
Sum_{n>=1} a(n-1)/(n!*n*2^n) = (Pi/2)^2. - Philippe Deléham, Aug 12 2003
For n >= 1, a(n-1) = 2^(n-1)*n!*(Sum_{k=0..n-1} (-1)^k*binomial(1/2, k)/(n - k)). - Milan Janjic, Dec 14 2008
Recurrence: a(n) = 4*n*a(n-1) - (2*n - 1)^2*a(n-2). - Vladimir Reshetnikov, Oct 13 2016

A167584 The ED4 array read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 13, 6, 1, 76, 41, 10, 1, 789, 372, 93, 14, 1, 7734, 4077, 1020, 169, 18, 1, 110937, 53106, 13269, 2212, 269, 22, 1, 1528920, 795645, 198990, 33165, 4140, 393, 26, 1, 28018665, 13536360, 3383145, 563850, 70485, 6996, 541, 30, 1
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The coefficients in the upper right triangle of the ED4 array (m>n) were found with the a(n,m) formula while the coefficients in the lower left triangle of the ED4 array (m<=n) were found with the recurrence relation, see below. We use for the array rows the letter n (>=1) and for the array columns the letter m (>=1).
For the ED1, ED2 and ED3 arrays see A167546, A167560 and A167572.
The Madhava-Gregory-Leibniz series representation for Pi/4 is the case m = 0 of the following more general result: for m = 0,1,2,... there holds 1/(2*m)! * Pi/4 = Sum_{k >= 0} ( (-1)^(m+k) * 1/Product_{j = -m .. m} (2*k + 1 + 2*j) ). The entries of this table are given by truncating these series to n-1 terms and then scaling by certain double factorials -- see the formula below. - Peter Bala, Nov 06 2016

Examples

			The ED4 array begins with:
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1
  2, 6, 10, 14, 18, 22, 26, 30, 34, 38
  13, 41, 93, 169, 269, 393, 541, 713, 909, 1129
  76, 372, 1020, 2212, 4140, 6996, 10972, 16260, 23052, 31540
  789, 4077, 13269, 33165, 70485, 133869, 233877, 382989, 595605, 888045
  7734, 53106, 198990, 563850, 1339110, 2812194, 5389566, 9619770, 16216470, 26081490
  ...
From _Peter Bala_, Nov 06 2016: (Start)
Table extended to nonpositive values of m:
  n\m|     -4     -3    -2    -1    0
  -----------------------------------
   0 |      0      0     0     0    0
   1 |      1      1     1     1    1
   2 |    -18    -14   -10    -6   -2
   3 |    233    141    73    29    9
   4 |  -2844  -1428  -620  -228  -60
   5 |  39309  17877  7149  2325  525
  ...
Column  0: (-1)^(n+1)*(2*n - 3)!!*n. See A001193;
Column -1: (-1)^n*(2*n - 5)!!/3!!*n*(7 - 4*n^2);
Column -2: (-1)^n*(2*n - 7)!!/5!!*n(-149 + 120*n^2 - 16*n^4);
Column -3: (-1)^n*(2*n - 9)!!/7!!*n*(6483 - 6076*n^2 + 1232*n^4 - 64*n^6);
Column -4: (-1)^n*(2*n - 11)!!/9!!*n*(-477801 + 489136*n^2 - 120288*n^4 + 9984*n^6 - 256*n^8). (End)
		

Crossrefs

A000012, A016825, A167585, A167586 and A167587 equal the first five rows of the array.
A024199, A167588 and A167589 equal the first three columns of the array.
A167590 equals the row sums of the ED4 array read by antidiagonals.
A167591 is a triangle related to the a(n) formulas of the rows of the ED4 array.
A167594 is a triangle related to the GF(z) formulas of the rows of the ED4 array.
Cf. A002866 (the 2^(n-1)*n! factor).
Cf. A167546 (ED1 array), A167560 (ED2 array), A167572 (ED3 array). Cf. A001193, A003881.

Programs

  • Maple
    T := proc (n, m) option remember;
          if n = 0 then 0
           elif n = 1 then 1
           else (4*m-2)*T(n-1,m)+(2*n+2*m-5)*(2*n-2*m-1)*T(n-2,m)
          end if;
         end proc:
    #square array read by antidiagonals
    seq(seq(T(n-m,m), m = 1..n-1), n = 1..10);
    # Peter Bala, Nov 06 2016
  • Mathematica
    T[0, k_] := 0; T[1, k_] := 1; T[n_, k_] := T[n, k] = (4*k - 2)*T[n - 1, k] + (2*n + 2*k - 5)*(2*n - 2*k - 1)*T[n - 2, k]; Table[T[n - k, k], {n, 2, 12}, {k, 1, n - 1}] (* G. C. Greubel, Jan 20 2017 *)

Formula

a(n,m) = ((2*m-3)!!/(2*(2*m-2*n-3)!!))*Integral_{y=0..oo} sinh(y*(2*n))/(cosh(y))^(2*m-1) dy for m>n.
The (n-1)-differences of the n-th array row lead to the recurrence relation
Sum_{k=0..n-1} (-1)^k*binomial(n-1,k)*a(n,m-k) = 2^(n-1)*n!
From Peter Bala, Nov 06 2016: (Start)
T(n,m) = ((2*m - 3)!!/(2*(2*m - 2*n - 3)!!)) * Sum_{k = 0..n-1} (-1)^(k+1)*binomial(2*n - k - 1, k)*2^(2*n - 2*k - 1)*1/(2*n - 2*m - 2*k + 1), for n and m >= 0.
Note the double factorial for a negative odd integer N is defined in terms of the gamma function as N!! = 2^((N+1)/2)*Gamma(N/2 + 1)/sqrt(Pi).
T(n, m) = (2*m - 3)!! * (2*n + 2*m - 3)!! * Sum_{k = 0..n-1} ( (-1)^(m + k + 1) / Product_{j = -(m-1) .. m-1} (2*k + 1 + 2*j) ).
Using this result we can extend the table to nonpositive values of m (the column index). Column 0 is a signed version of A001193. We have for m <= 0, T(n,m) = (2*n - 2*|m| - 3)!!/(2*|m| + 1)!! * Sum_{k = 0..n-1} (-1)^k*Product_{j = -|m|..|m|} (2*k + 1 + 2*j).
Recurrence: T(n, m) = (4*m - 2)*T(n-1, m) + (2*n + 2*m - 5)*(2*n - 2*m - 1)*T(n-2, m).
For a fixed value of n, the entries in row n are polynomial in the value of the column index m. The first few polynomials are [1, 4*m - 2, 12*m^2 - 8*m + 9, 32*m^3 - 16*m^2 + 120*m - 60, 80*m^4 + 952*m^2 - 768*m + 525, ...]. (End)

A007509 Numerator of Sum_{k=0..n} (-1)^k/(2*k+1).

Original entry on oeis.org

1, 2, 13, 76, 263, 2578, 36979, 33976, 622637, 11064338, 11757173, 255865444, 1346255081, 3852854518, 116752370597, 3473755390832, 3610501179557, 3481569435902, 133330680156299, 129049485078524, 5457995496252709, 227848175409504262, 234389556075339277
Offset: 0

Views

Author

Keywords

Comments

Denominators of convergents to 4/Pi. [For Brouncker's continued fraction, with numerators A025547(n+1), for n >= 0. - Wolfdieter Lang, Aug 26 2019]
See A352395 (the denominators for the present sequence) for the formula of this alternating sum, and the Abramowitz-Stegun link. - Wolfdieter Lang, Apr 06 2022

Examples

			1/1, 2/3, 13/15, 76/105, 263/315, 2578/3465, 36979/45045, 33976/45045, 622637/765765, ...
		

References

  • P. Beckmann, A History of Pi. Golem Press, Boulder, CO, 2nd ed., 1971, p. 131.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Denominators are given in A352395.
From Johannes W. Meijer, Nov 12 2009: (Start)
Cf. A157142 and A166107.
Appears in A167576, A167577, A167578, A024199, A167588 and A167589. (End)
Cf. A142969 for the numerators of Brouncker's continued fraction of 4/Pi - 1.

Programs

  • Magma
    [Numerator(&+[(-1)^k/(2*k+1):k in [0..n]]): n in [0..23]]; // Marius A. Burtea, Aug 26 2019
  • Maple
    A007509 := n->numer(add((-1)^k/(2*k+1),k=0..n));
  • Mathematica
    Table[Numerator[FunctionExpand[(Pi + (-1)^n(HarmonicNumber[n/2 + 1/4] - HarmonicNumber[n/2 - 1/4]))/4]], {n, 0, 20}] (* Vladimir Reshetnikov, Jan 18 2011 *)
    Numerator[Table[Sum[(-1)^k/(2k+1),{k,0,n}],{n,0,30}]] (* Harvey P. Dale, Oct 22 2011 *)
    Table[(-1)^k/(2k+1),{k,0,30}]//Accumulate//Numerator (* Harvey P. Dale, May 03 2019 *)

Formula

a(n) = numerator((Psi(n + 3/2) - Psi((2*n - (-1)^n)/4 + 1) - log(2) + Pi/2)/2), with the digamma function Psi(z). See the formula in A352395. - Wolfdieter Lang, Apr 06 2022
a(n) = numerator(Pi/4 + (-1)^n * (Psi((n + 5/2)/2) - Psi((n + 3/2)/2))/4). - Vaclav Kotesovec, May 16 2022

Extensions

Crossref. corrected (A025547 replaced with A352395) by Wolfdieter Lang, Apr 06 2022

A167591 A triangle related to the a(n) formulas of the rows of the ED4 array A167584.

Original entry on oeis.org

1, 4, -2, 12, -8, 9, 32, -16, 120, -60, 80, 0, 952, -768, 525, 192, 160, 5664, -5008, 12396, -5670, 448, 896, 27888, -20672, 162740, -133128, 72765, 1024, 3584, 120064, -46720, 1537216, -1562464, 2557296, -1081080, 2304, 12288, 467712, 76800
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The a(n) formulas given below correspond to the first ten rows of the ED4 array A167584.
The recurrence relations of the a(n) formulas for the left hand triangle columns, see the cross-references below, lead to the sequences A013609, A003148, A081277 and A079628.

Examples

			Row 1: a(n) = 1.
Row 2: a(n) = 4*n - 2.
Row 3: a(n) = 12*n^2 - 8*n + 9.
Row 4: a(n) = 32*n^3 - 16*n^2 + 120*n - 60.
Row 5: a(n) = 80*n^4 + 0*n^3 + 952*n^2 - 768*n + 525.
Row 6: a(n) = 192*n^5 + 160*n^4 + 5664*n^3 - 5008*n^2 + 12396*n - 5670.
Row 7: a(n) = 448*n^6 + 896*n^5 + 27888*n^4 - 20672*n^3 + 162740*n^2 - 133128*n + 72765.
Row 8: a(n) = 1024*n^7 + 3584*n^6 + 120064*n^5 - 46720*n^4 + 1537216*n^3 - 1562464*n^2 + 2557296*n - 1081080.
Row 9: a(n) = 2304*n^8 + 12288*n^7 + 467712*n^6 + 76800*n^5 + 11589216*n^4 - 12058368*n^3 + 47963568*n^2 - 38278080*n + 18243225.
Row 10: a(n) = 5120*n^9 + 38400*n^8 + 1686528*n^7 + 1540608*n^6 + 73898880*n^5 - 66179520*n^4 + 631348672*n^3 - 669559008*n^2 + 869709780*n - 344594250.
		

Crossrefs

A167584 is the ED4 array.
A000012, A016825, A167585, A167586 and A167587 equal the first five rows of the ED4 array.
A001787, A167592, A167593, A168307 and A168308 equal the first five left hand triangle columns.
A001193 equals the first right hand triangle column.
A024199 equals the row sums.

Extensions

Comment and formulas added by Johannes W. Meijer, Nov 23 2009

A167576 The first column of the ED3 array A167572.

Original entry on oeis.org

1, 5, 23, 167, 1473, 16413, 211479, 3192975, 54010305, 1030249845, 21566327895, 497334999735, 12405876372225, 335591130336525, 9716331072597975, 301633179343890975, 9941514351641143425, 348336799875365041125
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

Basically a(n) measures the difference between the Euler factorial n! and the Luschny factorial L(n) at half-integer values. For the Luschny factorial see the link. The formula given in the Maple section is a variant of a formula given by Cyril Damamme in A135457. - Peter Luschny, Jul 18 2015

Examples

			G.f. = x + 5*x^2 + 23*x^3 + 167*x^4 + 1473*x^5 + 16413*x^6 + ...
		

Crossrefs

Equals the first column of the ED3 array A167572.
Equals the first right hand column of A167583.
Other columns are A167577 and A167578.
Cf. A097801 (the 2*(-1)^n*(2*n-5)!! factor).
Cf. A007509 and A025547 (the sum((-1)^(k+n)/(2*k+1), k=0..n-1) factor).
Cf. A024199 and A135457.

Programs

  • Maple
    L := x -> (1+x*(Psi(1-x/2)-Psi(1/2-x/2)))/(-x)!:
    a := x -> (L(x-1/2)-(x-1/2)!)*2^(x-1)*sqrt(Pi):
    seq(simplify(a(n)),n=1..18); # Peter Luschny, Jul 18 2015
    a := proc(n) option remember: if n=1 then 1 else (2*n-1)*a(n-1)+2*(-1)^n*doublefactorial(2*n-5) fi: end: seq(a(n),n=1..18); # Johannes W. Meijer, Jul 20 2015
  • Mathematica
    a[ n_] := If[ n < 1, 0, (2 n - 3)!! ((-1)^n - I (4 n - 2) Sum[ I^k / k, {k, 1, 2 n - 1, 2}])]; (* Michael Somos, Jul 20 2015 *)
    a[ n_] := If[ n < 1, 0, (2 n - 3)!! ((-1)^n + (4 n - 2) Sum[ KroneckerSymbol[ -4, k]/ k, {k, 2 n - 1}])]; (* Michael Somos, Jan 31 2019 *)
  • PARI
    {a(n) = if( n<1, 0, prod(k=1, n-1, 2*k - 1) * ((-1)^n - (4*n - 2) * sum(k=1, n, (-1)^k / (2*k - 1))))}; /* Michael Somos, Jul 20 2015 */

Formula

a(n) = (-1)^n*(2*n-3)!!*(1 + (4*n-2)*Sum_{k=0..n-1} (-1)^(k+n)/(2*k+1)).
a(n) = (2*n-1)*a(n-1) + 2*(-1)^n*(2*n-5)!! with a(1) = 1.
a(n) = 4*a(n-1) + (4*n^2 - 16*n + 15)*a(n-2) with a(1) = 1 and a(2) = 5 [Superseeker].
0 = a(n)*a(n+1)*(-440*a(n+2) - 220*a(n+3) + 55*a(n+4)) + a(n)*a(n+2)*(536*a(n+2) - 118*a(n+3) - 4*a(n+4)) + a(n)*a(n+3)*(-4*a(n+3) + a(n+4)) + a(n+1)^2*(-220*a(n+2) - 32*a(n+3) + 8*a(n+4)) + a(n+1)*a(n+2)*(+71*a(n+2) + 4*a(n+3) - 2*a(n+4)) + a(n+2)^2*(-4*a(n+2) + a(n+3)) if n>0. - Michael Somos, Jul 19 2015
a(n) = (-1 + (n-1/2)*LerchPhi(-1,1,n+1/2) + (-n+1/2)*LerchPhi(-1,1,-n+1/2))/(1-2*n)!!. - Johannes W. Meijer, Jul 20 2015
a(n) = A024199(n) + A135457(n). - Cyril Damamme, Jul 22 2015
a(n) = ((-1)^n/(2*n - 1) + Pi/2 - (-1)^n LerchPhi(-1, 1, n + 1/2)) (2*n - 1)!!. - Michael Somos, Jan 31 2019

A024200 a(0) = 1, a(1) = 0, a(n+1) = 2*a(n) + (2*n-1)^2*a(n-1).

Original entry on oeis.org

1, 0, 1, 2, 29, 156, 2661, 24198, 498105, 6440760, 156833865, 2638782090, 74441298645, 1544798322900, 49615408298925, 1225388793991950, 44177335967379825, 1265953302961023600, 50641025474398676625, 1652074847076051263250, 72631713568603890826125, 2658069269539881753055500
Offset: 0

Views

Author

Keywords

Comments

a(n) = s(1)s(2)...s(n)(1/s(2) - 1/s(3) + ... + c/s(n)) where c=(-1)^n and s(k) = 2k-1 for k = 1,2,3,...

References

  • A. E. Jolliffe, Continued Fractions, in Encyclopaedia Britannica, 11th ed., pp. 30-33; see p. 31.

Programs

  • Mathematica
    CoefficientList[Series[(1-Pi/4)/Sqrt[1-2*x] + 1/2*Log[2*x+Sqrt[4*x^2-1]]/Sqrt[2*x-1], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Mar 18 2014 *)
    RecurrenceTable[{a[n+1] == 2*a[n] + (2*n-1)^2*a[n-1],a[0] == 1, a[1] == 0},a,{n,0,20}] (* Vaclav Kotesovec, Mar 18 2014 *)
    nxt[{n_,a_,b_}]:={n+1,b,2b+a (2n-1)^2}; NestList[nxt,{1,1,0},30][[;;,2]] (* Harvey P. Dale, Dec 21 2024 *)

Formula

A024199(n) + a(n) = A001147(n) = (2n-1)!! - Max Alekseyev, Sep 23 2007
A024199(n)/a(n) -> Pi/(4-Pi) as n -> oo. - Max Alekseyev, Sep 23 2007
E.g.f.: (1-Pi/4)/sqrt(1-2*x) + 1/2*log(2*x+sqrt(4*x^2-1))/sqrt(2*x-1). - Vaclav Kotesovec, Mar 18 2014
a(n) ~ (4-Pi) * 2^(n-3/2) * n^n / exp(n). - Vaclav Kotesovec, Mar 18 2014

Extensions

Revised by N. J. A. Sloane, Jul 19 2002
Initial terms changed by Max Alekseyev, Sep 23 2007

A167588 The second column of the ED4 array A167584.

Original entry on oeis.org

1, 6, 41, 372, 4077, 53106, 795645, 13536360, 257055705, 5400196830, 124170067665, 3104906420700, 83818724048325, 2431059231544650, 75354930324303525, 2486926158748693200, 87036225272850632625, 3220532233879435917750, 125594424461427237941625
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Crossrefs

Equals the second column of the ED4 array A167584.
Other columns are A024199 and A167589.
Cf. A007509 and A025547 (the sum((-1)^(k+n)/(2*k+1), k=0..n-1) factor), A001147, A142970.

Programs

  • Mathematica
    Table[(1/2)*(-1)^(n)*(2*n - 3)!!*((n) + (4*n^2 - 1)*Sum[(-1)^(k + n)/(2*k + 1), {k, 0, n - 1}]), {n, 1, 50}] (* G. C. Greubel, Jun 17 2016 *)

Formula

a(n) = (1/2)*(-1)^(n)*(2*n-3)!!*(n+(4*n^2-1)*Sum_{k=0..n-1} ((-1)^(k+n)/(2*k+1))).
From Peter Bala, Nov 01 2016: (Start)
a(n) = (2*n + 1)!! * Sum_{k = 0..n-1} (-1)^(k-1)/((2*k - 1)*(2*k + 1)*(2*k + 3)).
a(n) ~ Pi * 2^(n-3/2) * ((n+1)/e)^(n+1).
E.g.f.: (4*x*sqrt(1 - 4*x^2) + 2*arcsin(2*x))/(8*(1 - 2*x)^(3/2)).
a(n) = 6*a(n-1) + (2*n - 5)*(2*n - 1)*a(n-2) with a(0) = 0, a(1) = 1.
The sequence b(n) := (2*n + 1)!! = (2*n + 2)!/((n + 1)!*2^(n+1)) satisfies the same recurrence with b(0) = 1 and b(1) = 3. This leads to the continued fraction representation a(n) = b(n)*[ 1/(3 - 3/(6 + 5/(6 + 21/(6 + ... + (2*n - 5)*(2*n - 1)/(6))))) ] for n >= 2.
As n -> infinity, a(n)/(A001147(n+1)) -> 1/2!*Pi/4 = 1/(3 - 3/(6 + 5/(6 + 21/(6 + ... + (2*n - 5)*(2*n - 1)/(6 + ...))))). Compare with the generalized continued fraction representation Pi = 3 + 1^2/(6 + 3^2/(6 + 5^2/(6 + ...))). See A142970. (End)

A167589 The third column of the ED4 array A167584.

Original entry on oeis.org

1, 10, 93, 1020, 13269, 198990, 3383145, 64276920, 1349846505, 31046064210, 776157686325, 20956154152500, 607730434609725, 18839602224969750, 621707822126431425, 21759750056864358000, 805111392478121276625
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Crossrefs

Equals the third column of the ED4 array A167584.
Other columns are A024199 and A167588.
Cf. A007509 and A025547 (the sum((-1)^(k+n)/(2*k+1), k=0..n-1) factor), A001147.

Programs

  • Mathematica
    Table[(1/8)*(-1)^(n)*(2*n - 5)!!*((4*n^3 - 11*n) + (16*n^4 - 40*n^2 + 9)*(Sum[(-1)^(k + n)/(2*k + 1), {k, 0, n - 1}])), {n, 1, 50}] (* G. C. Greubel, Jun 17 2016 *)

Formula

a(n) = (1/8)*(-1)^n*(2*n-5)!!*((4*n^3-11*n)+(16*n^4-40*n^2+9)*(Sum_{k=0..n-1} (-1)^(k+n)/(2*k+1) ) ).
From Peter Bala, Nov 01 2016: (Start)
a(n) = 3*(2*n + 3)!! * Sum_{k = 0..n-1} (-1)^k/((2*k - 3)*(2*k - 1)*(2*k + 1)*(2*k + 3)*(2*k + 5)).
a(n) ~ Pi*2^(n - 5/2)*((n + 2)/e)^(n + 2).
E.g.f.: (6*arcsin(2*x) + 4*x*sqrt(1 - 4*x^2)*(5 - 8*x^2))/(32*(1 - 2*x)^(5/2)).
a(n) = 10*a(n) + (2*n - 7)*(2*n + 1)*a(n-2) with a(0) = 0, a(1) = 1.
The sequence b(n) := (2*n + 3)!! = (2*n + 4)!/((n + 2)!*2^(n+2)) = A001147(n+2) satisfies the same recurrence with b(0) = 3 and b(1) = 15. This leads to the continued fraction representation a(n) = 1/3*b(n)*( 1/(5 - 15/(10 - 7/(10 + 9/(10 + 33/(10 + ... + (2*n - 7)*(2*n + 1)/(10)))))) ) for n >= 2.
As n -> infinity, 3*a(n)/(A001147(n+2)) -> 9/4!*Pi/4 = 1/(5 - 15/(10 - 7/(10 + 9/(10 + 33/(10 + ... + (2*n - 7)*(2*n + 1)/(10 + ...)))))). (End)

A167594 A triangle related to the GF(z) formulas of the rows of the ED4 array A167584.

Original entry on oeis.org

1, 2, 2, 9, 2, 13, 60, -12, 68, 76, 525, -300, 774, 132, 789, 5670, -5250, 11820, -3636, 6702, 7734, 72765, -92610, 212415, -143340, 143307, 19086, 110937, 1081080, -1746360, 4286520, -4246200, 4156200, -1204200, 1305000, 1528920
Offset: 1

Views

Author

Johannes W. Meijer, Nov 10 2009

Keywords

Comments

The GF(z) formulas given below correspond to the first ten rows of the ED4 array A167584. The polynomials in their numerators lead to the triangle given above.

Examples

			Row 1: GF(z) = 1/(1-z).
Row 2: GF(z) = (2*z + 2)/(1-z)^2.
Row 3: GF(z) = (9*z^2 + 2*z + 13)/(1-z)^3.
Row 4: GF(z) = (60*z^3 - 12*z^2 + 68*z + 76)/(1-z)^4.
Row 5: GF(z) = (525*z^4 - 300*z^3 + 774*z^2 + 132*z + 789)/(1-z)^5.
Row 6: GF(z) = (5670*z^5 - 5250*z^4 + 11820*z^3 - 3636*z^2 + 6702*z + 7734)/(1-z)^6.
Row 7: GF(z) = (72765*z^6 - 92610*z^5 + 212415*z^4 - 143340*z^3 + 143307*z^2 + 19086*z + 110937)/ (1-z)^7.
Row 8: GF(z) = (1081080*z^7 - 1746360*z^6 + 4286520*z^5 - 4246200*z^4 + 4156200*z^3 - 1204200*z^2 + 1305000*z + 1528920)/(1-z)^8.
Row 9: GF(z) = (18243225*z^8 - 35675640*z^7 + 95176620*z^6 -121723560*z^5 + 132769350*z^4 - 73816200*z^3 + 45017100*z^2 + 4887720*z + 28018665) / (1-z)^9.
Row 10: GF(z) = (344594250*z^9 - 790539750*z^8 + 2299457160*z^7 - 3567314520*z^6 + 4441299660*z^5 - 3398138100*z^4 + 2160066600*z^3 - 550619640*z^2 + 421244730*z + 497895210)/(1-z)^10.
		

Crossrefs

A167584 is the ED4 array.
A001193 equals the first left hand column.
A024199 equals the first right hand column.
A002866 equals the row sums.
Showing 1-10 of 19 results. Next