A337070
Number of strict chains of divisors starting with the superprimorial A006939(n).
Original entry on oeis.org
1, 2, 16, 1208, 1383936, 32718467072, 20166949856488576, 391322675415566237681536
Offset: 0
The a(0) = 1 through a(2) = 16 chains:
1 2 12
2/1 12/1
12/2
12/3
12/4
12/6
12/2/1
12/3/1
12/4/1
12/4/2
12/6/1
12/6/2
12/6/3
12/4/2/1
12/6/2/1
12/6/3/1
A336571 is the case with distinct prime multiplicities.
A337071 is the version for factorials.
A000142 counts divisors of superprimorials.
A006939 lists superprimorials or Chernoff numbers.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A317829 counts factorizations of superprimorials.
-
chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
chnsc[n_]:=If[n==1,{{1}},Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,Most[Divisors[n]]}],{n}]];
Table[Length[chnsc[chern[n]]],{n,0,3}]
A337071
Number of strict chains of divisors starting with n!.
Original entry on oeis.org
1, 1, 2, 6, 40, 264, 3776, 40256, 1168000, 34204032, 1107791872, 23233380352, 1486675898368, 38934372315136, 1999103691427840, 132874800979423232, 20506322412604129280, 776179999255323115520, 107455579038104865996800, 4651534843901106606571520, 731092060557632280262082560
Offset: 0
The a(1) = 1 through a(3) = 6 chains:
1 2 6
2/1 6/1
6/2
6/3
6/2/1
6/3/1
The a(4) = 40 chains:
24 24/1 24/2/1 24/4/2/1 24/8/4/2/1
24/2 24/3/1 24/6/2/1 24/12/4/2/1
24/3 24/4/1 24/6/3/1 24/12/6/2/1
24/4 24/4/2 24/8/2/1 24/12/6/3/1
24/6 24/6/1 24/8/4/1
24/8 24/6/2 24/8/4/2
24/12 24/6/3 24/12/2/1
24/8/1 24/12/3/1
24/8/2 24/12/4/1
24/8/4 24/12/4/2
24/12/1 24/12/6/1
24/12/2 24/12/6/2
24/12/3 24/12/6/3
24/12/4
24/12/6
A337070 is the version for superprimorials.
A337074 counts the case with distinct prime multiplicities.
A337105 is the case ending with one.
A027423 counts divisors of factorial numbers.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A076716 counts factorizations of factorial numbers.
-
chnsc[n_]:=Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,Most[Divisors[n]]}],{n}];
Table[Length[chnsc[n!]],{n,0,5}]
A342085
Number of decreasing chains of distinct superior divisors starting with n.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 5, 1, 2, 2, 6, 1, 5, 1, 4, 2, 2, 1, 11, 2, 2, 3, 4, 1, 7, 1, 10, 2, 2, 2, 15, 1, 2, 2, 10, 1, 6, 1, 4, 5, 2, 1, 26, 2, 5, 2, 4, 1, 11, 2, 10, 2, 2, 1, 21, 1, 2, 5, 20, 2, 6, 1, 4, 2, 7, 1, 39, 1, 2, 5, 4, 2, 6, 1, 23, 6, 2, 1
Offset: 1
The a(n) chains for n = 2, 4, 8, 12, 16, 20, 24, 30, 32:
2 4 8 12 16 20 24 30 32
4/2 8/4 12/4 16/4 20/5 24/6 30/6 32/8
8/4/2 12/6 16/8 20/10 24/8 30/10 32/16
12/4/2 16/4/2 20/10/5 24/12 30/15 32/8/4
12/6/3 16/8/4 24/6/3 30/6/3 32/16/4
16/8/4/2 24/8/4 30/10/5 32/16/8
24/12/4 30/15/5 32/8/4/2
24/12/6 32/16/4/2
24/8/4/2 32/16/8/4
24/12/4/2 32/16/8/4/2
24/12/6/3
The a(n) ordered factorizations for n = 2, 4, 8, 12, 16, 20, 24, 30, 32:
2 4 8 12 16 20 24 30 32
2*2 4*2 4*3 4*4 5*4 6*4 6*5 8*4
2*2*2 6*2 8*2 10*2 8*3 10*3 16*2
2*2*3 2*2*4 5*2*2 12*2 15*2 4*2*4
3*2*2 4*2*2 3*2*4 3*2*5 4*4*2
2*2*2*2 4*2*3 5*2*3 8*2*2
4*3*2 5*3*2 2*2*2*4
6*2*2 2*2*4*2
2*2*2*3 4*2*2*2
2*2*3*2 2*2*2*2*2
3*2*2*2
The restriction to powers of 2 is
A045690.
The strictly inferior version is
A342083.
The strictly superior version is
A342084.
The additive version not allowing equality is
A342098.
A003238 counts divisibility chains summing to n-1, with strict case
A122651.
A038548 counts inferior (or superior) divisors.
A056924 counts strictly inferior (or strictly superior) divisors.
A067824 counts strict chains of divisors starting with n.
A074206 counts strict chains of divisors from n to 1 (also ordered factorizations).
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts strict chains of divisors.
A334996 counts ordered factorizations by product and length.
A334997 counts chains of divisors of n by length.
Cf.
A000203,
A001248,
A005117,
A006530,
A020639,
A057567,
A057568,
A112798,
A169594,
A337105,
A342096,
A342097.
-
a:= proc(n) option remember; 1+add(`if`(d>=n/d,
a(d), 0), d=numtheory[divisors](n) minus {n})
end:
seq(a(n), n=1..128); # Alois P. Heinz, Jun 24 2021
-
cmo[n_]:=Prepend[Prepend[#,n]&/@Join@@cmo/@Select[Most[Divisors[n]],#>=n/#&],{n}];
Table[Length[cmo[n]],{n,100}]
A343378
Number of strict integer partitions of n that are empty or such that (1) the smallest part divides every other part and (2) the greatest part is divisible by every other part.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 3, 6, 5, 4, 6, 6, 4, 8, 6, 7, 9, 8, 5, 12, 9, 8, 9, 11, 6, 14, 10, 10, 11, 10, 10, 20, 12, 12, 15, 18, 10, 21, 13, 15, 19, 17, 11, 27, 19, 20, 20, 25, 13, 27, 22, 26, 23, 24, 15, 34, 23, 21, 27, 30, 19, 38, 24, 26, 27, 37
Offset: 0
The a(1) = 1 through a(15) = 6 partitions (A..F = 10..15):
1 2 3 4 5 6 7 8 9 A B C D E F
21 31 41 42 61 62 63 82 A1 84 C1 C2 A5
51 421 71 81 91 821 93 841 D1 C3
621 631 A2 931 842 E1
B1 A21 C21
6321 8421
The first condition alone gives
A097986.
The non-strict version is
A130714 (Heinz numbers are complement of
A343343).
The second condition alone gives
A343347.
The strict complement is counted by
A343382.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.
-
Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&And@@IntegerQ/@(#/Min@@#)&&And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]
A320269
Matula-Goebel numbers of lone-child-avoiding rooted trees in which the non-leaf branches directly under any given node are all equal (semi-achirality).
Original entry on oeis.org
1, 4, 8, 14, 16, 28, 32, 38, 49, 56, 64, 76, 86, 98, 106, 112, 128, 152, 172, 196, 212, 214, 224, 256, 262, 304, 326, 343, 344, 361, 392, 424, 428, 448, 454, 512, 524, 526, 608, 622, 652, 686, 688, 722, 766, 784, 848, 856, 886, 896, 908, 1024, 1042, 1048, 1052
Offset: 1
The sequence of rooted trees together with their Matula-Goebel numbers begins:
1: o
4: (oo)
8: (ooo)
14: (o(oo))
16: (oooo)
28: (oo(oo))
32: (ooooo)
38: (o(ooo))
49: ((oo)(oo))
56: (ooo(oo))
64: (oooooo)
76: (oo(ooo))
86: (o(o(oo)))
98: (o(oo)(oo))
106: (o(oooo))
112: (oooo(oo))
128: (ooooooo)
152: (ooo(ooo))
172: (oo(o(oo)))
196: (oo(oo)(oo))
Not requiring lone-child-avoidance gives
A320230.
The enumeration of these trees by vertices is
A320268.
The semi-lone-child-avoiding version is
A331936.
If the non-leaf branches are all different instead of equal we get
A331965.
Achiral rooted trees are counted by
A003238.
MG-numbers of lone-child-avoiding rooted trees are
A291636.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]
hmakQ[n_]:=And[!PrimeQ[n],SameQ@@DeleteCases[primeMS[n],1],And@@hmakQ/@primeMS[n]];Select[Range[1000],hmakQ[#]&]
Updated with corrected terminology by
Gus Wiseman, Feb 06 2020
A342495
Number of compositions of n with constant (equal) first quotients.
Original entry on oeis.org
1, 1, 2, 4, 5, 6, 8, 10, 10, 11, 12, 12, 16, 16, 18, 20, 19, 18, 22, 22, 24, 28, 24, 24, 30, 27, 30, 30, 34, 30, 38, 36, 36, 36, 36, 40, 43, 40, 42, 46, 48, 42, 52, 46, 48, 52, 48, 48, 56, 55, 54, 54, 58, 54, 60, 58, 64, 64, 60, 60, 72, 64, 68, 74, 69, 72, 72
Offset: 0
The composition (1,2,4,8) has first quotients (2,2,2) so is counted under a(15).
The composition (4,5,6) has first quotients (5/4,6/5) so is not counted under a(15).
The a(1) = 1 through a(7) = 10 compositions:
(1) (2) (3) (4) (5) (6) (7)
(11) (12) (13) (14) (15) (16)
(21) (22) (23) (24) (25)
(111) (31) (32) (33) (34)
(1111) (41) (42) (43)
(11111) (51) (52)
(222) (61)
(111111) (124)
(421)
(1111111)
The version for differences instead of quotients is
A175342.
The strict unordered version is
A342515.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A167865 counts strict chains of divisors > 1 summing to n.
Cf.
A002843,
A003242,
A008965,
A048004,
A059966,
A074206,
A167606,
A253249,
A318991,
A318992,
A325557,
A342528.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Divide@@@Partition[#,2,1]&]],{n,0,15}]
A342529
Number of compositions of n with distinct first quotients.
Original entry on oeis.org
1, 1, 2, 3, 7, 13, 19, 36, 67, 114, 197, 322, 564, 976, 1614, 2729, 4444, 7364, 12357, 20231, 33147, 53973, 87254, 140861, 227535, 368050, 589706, 940999, 1497912, 2378260, 3774297, 5964712, 9416411, 14822087, 23244440, 36420756
Offset: 0
The composition (2,1,2,3) has first quotients (1/2,2,3/2) so is counted under a(8).
The a(1) = 1 through a(5) = 13 compositions:
(1) (2) (3) (4) (5)
(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3)
(3,1) (3,2)
(1,1,2) (4,1)
(1,2,1) (1,1,3)
(2,1,1) (1,2,2)
(1,3,1)
(2,1,2)
(2,2,1)
(3,1,1)
(1,1,2,1)
(1,2,1,1)
The version for differences instead of quotients is
A325545.
The version for equal first quotients is
A342495.
The strict unordered version is
A342520.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A167865 counts strict chains of divisors > 1 summing to n.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@Divide@@@Partition[#,2,1]&]],{n,0,15}]
A343381
Number of strict integer partitions of n with a part dividing all the others but no part divisible by all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 4, 9, 9, 14, 14, 20, 20, 30, 30, 39, 44, 59, 59, 77, 85, 106, 114, 145, 150, 191, 205, 247, 267, 328, 345, 418, 455, 544, 582, 699, 745, 886, 962, 1117, 1209, 1430, 1523, 1778, 1932, 2225, 2406, 2792, 3001, 3456, 3750
Offset: 0
The a(6) = 1 through a(16) = 14 partitions (empty column indicated by dot, A..D = 10..13):
321 . 431 531 541 641 642 751 761 861 862
521 721 731 651 5431 851 951 871
4321 5321 741 6421 941 A41 961
831 7321 A31 B31 A42
921 B21 6531 B41
5421 6431 7431 D21
6521 7521 6541
7421 9321 7531
8321 54321 7621
8431
8521
9421
A321
64321
The first condition alone gives
A097986.
The second condition alone gives
A343377.
The opposite (and dual) version is
A343380.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.
-
Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&And@@IntegerQ/@(#/Min@@#)&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]
A337255
Irregular triangle read by rows where T(n,k) is the number of strict length-k chains of divisors starting with n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 5, 7, 3, 1, 1, 1, 3, 2, 1, 3, 2, 1, 4, 6, 4, 1, 1, 1, 1, 5, 7, 3, 1, 1, 1, 5, 7, 3, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 15, 13, 4, 1, 2, 1, 1, 3, 2, 1, 3, 3, 1, 1, 5, 7, 3, 1, 1, 1
Offset: 1
Sequence of rows begins:
1: {1} 16: {1,4,6,4,1}
2: {1,1} 17: {1,1}
3: {1,1} 18: {1,5,7,3}
4: {1,2,1} 19: {1,1}
5: {1,1} 20: {1,5,7,3}
6: {1,3,2} 21: {1,3,2}
7: {1,1} 22: {1,3,2}
8: {1,3,3,1} 23: {1,1}
9: {1,2,1} 24: {1,7,15,13,4}
10: {1,3,2} 25: {1,2,1}
11: {1,1} 26: {1,3,2}
12: {1,5,7,3} 27: {1,3,3,1}
13: {1,1} 28: {1,5,7,3}
14: {1,3,2} 29: {1,1}
15: {1,3,2} 30: {1,7,12,6}
Row n = 24 counts the following chains:
24 24/1 24/2/1 24/4/2/1 24/8/4/2/1
24/2 24/3/1 24/6/2/1 24/12/4/2/1
24/3 24/4/1 24/6/3/1 24/12/6/2/1
24/4 24/4/2 24/8/2/1 24/12/6/3/1
24/6 24/6/1 24/8/4/1
24/8 24/6/2 24/8/4/2
24/12 24/6/3 24/12/2/1
24/8/1 24/12/3/1
24/8/2 24/12/4/1
24/8/4 24/12/4/2
24/12/1 24/12/6/1
24/12/2 24/12/6/2
24/12/3 24/12/6/3
24/12/4
24/12/6
A334996 appears to be the case of chains ending with 1.
A001222 counts prime factors with multiplicity.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A122651 counts chains of divisors summing to n.
A167865 counts chains of divisors > 1 summing to n.
A251683 counts chains of divisors from n to 1 by length.
A253249 counts nonempty chains of divisors.
-
b:= proc(n) option remember; expand(x*(1 +
add(b(d), d=numtheory[divisors](n) minus {n})))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
seq(T(n), n=1..50); # Alois P. Heinz, Aug 23 2020
-
chss[n_]:=Prepend[Join@@Table[Prepend[#,n]&/@chss[d],{d,Most[Divisors[n]]}],{n}];
Table[Length[Select[chss[n],Length[#]==k&]],{n,30},{k,1+PrimeOmega[n]}]
A343380
Number of strict integer partitions of n with no part dividing all the others but with a part divisible by all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 1, 4, 0, 1, 0, 2, 0, 4, 0, 3, 1, 2, 2, 5, 0, 5, 3, 4, 1, 9, 1, 5, 2, 4, 5, 11, 1, 6, 4, 11, 3, 13, 5, 10, 4, 11, 8, 14, 3, 10, 6, 9, 3, 15, 6, 14, 10, 18, 8
Offset: 0
The a(11) = 1 through a(29) = 4 partitions (empty columns indicated by dots, A..O = 10..24):
632 . . . . . A52 . C43 . C432 C64 E72 . C643 . K52 . I92
C32 F53 C6432 K54
I32 O32
C632 I632
The first condition alone gives
A341450.
The second condition alone gives
A343347.
The opposite (and dual) version is
A343381.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.
-
Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&&And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]
Comments