A067824 a(1) = 1; for n > 1, a(n) = 1 + Sum_{0 < d < n, d|n} a(d).
1, 2, 2, 4, 2, 6, 2, 8, 4, 6, 2, 16, 2, 6, 6, 16, 2, 16, 2, 16, 6, 6, 2, 40, 4, 6, 8, 16, 2, 26, 2, 32, 6, 6, 6, 52, 2, 6, 6, 40, 2, 26, 2, 16, 16, 6, 2, 96, 4, 16, 6, 16, 2, 40, 6, 40, 6, 6, 2, 88, 2, 6, 16, 64, 6, 26, 2, 16, 6, 26, 2, 152, 2, 6, 16, 16, 6, 26, 2, 96, 16, 6, 2, 88, 6, 6, 6, 40, 2, 88, 6, 16, 6, 6, 6, 224, 2, 16, 16, 52
Offset: 1
Keywords
Examples
a(12) = 1 + a(6) + a(4) + a(3) + a(2) + a(1) = 1+(1+a(3)+a(2)+a(1))+(1+a(2)+a(1))+(1+a(1))+(1+a(1))+(1) = 1+(1+(1+a(1))+(1+a(1))+1)+(1+(1+a(1))+1)+(1+1)+(1+1)+(1) = 1+(1+(1+1)+(1+1)+1)+(1+(1+1)+1)+(1+1)+(1+1)+(1) = 1 + 6 + 4 + 2 + 2 + 1 = 16.
References
- Olivier Bodini and Eric Rivals. Tiling an Interval of the Discrete Line. In M. Lewenstein and G. Valiente, editors, Proc. of the 17th Annual Symposium on Combinatorial Pattern Matching (CPM), volume 4009 of Lecture Notes in Computer Science, pages 117-128. Springer Verlag, 2006.
- Juhani Karhumaki, Yury Lifshits and Wojciech Rytter, Tiling Periodicity, in Combinatorial Pattern Matching, Lecture Notes in Computer Science, Volume 4580/2007, Springer-Verlag.
Links
- Reinhard Zumkeller, Table = of n, a(n) for n = 1..10000
- Olivier Bodini and Eric Rivals, Tiling an Interval of the Discrete Line
- Thomas Fink, Recursively divisible numbers, arXiv:1912.07979 [math.NT], 2019. See Table 1 p. 8.
- T. M. A. Fink, Properties of the recursive divisor function and the number of ordered factorizations, arXiv:2307.09140 [math.NT], 2023.
- Michael Greene and Robin Michaels, One Dimensional Tilings, Eureka (Cambridge) 54 (1996), 4-13.
- G. Hajos, Sur le problème de factorisation des groupes cycliques, Acta Math. Acad. Sci. Hung., 1:189-195, 1950.
- J. Karhumaki and Y. Lifshits, Tiling periodicity.
- M. Krasner and B. Ranulac, Sur une propriété des polynomes de la division du cercle, Comptes Rendus Académie des Sciences Paris, 240:397-399, 1937.
- Eric H. Rivals, Tiling
- Index entries for sequences computed from exponents in factorization of n
Crossrefs
Cf. A122408 (fixed points).
Inverse Möbius transform of A074206.
A001055 counts factorizations.
A008480 counts maximal chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A253249 counts nonempty chains of divisors.
A337071 counts chains of divisors starting with n!.
A337256 counts chains of divisors.
Programs
-
Haskell
a067824 n = 1 + sum (map a067824 [d | d <- [1..n-1], mod n d == 0]) -- Reinhard Zumkeller, Oct 13 2011
-
Maple
a:= proc(n) option remember; 1+add(a(d), d=numtheory[divisors](n) minus {n}) end: seq(a(n), n=1..100); # Alois P. Heinz, Apr 17 2021
-
Mathematica
a[1]=1; a[n_] := a[n] = 1+Sum[If[Mod[n,d]==0, a[d], 0], {d, 1, n-1}]; Array[a,100] (* Jean-François Alcover, Apr 28 2011 *)
-
PARI
A=vector(100);A[1]=1; for(n=2,#A,A[n]=1+sumdiv(n,d,A[d])); A \\ Charles R Greathouse IV, Nov 20 2012
Formula
a(n) = 2*A074206(n), n>1. - Vladeta Jovovic, Jul 03 2005
a(p^k) = 2^k for primes p. - Reinhard Zumkeller, Sep 03 2006
Dirichlet g.f.: zeta(s) / (2 - zeta(s)). - Álvar Ibeas, Dec 30 2018
G.f. A(x) satisfies: A(x) = x/(1 - x) + Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, May 18 2019
Extensions
Entry revised by N. J. A. Sloane, Aug 27 2006
Comments