cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 1233 results. Next

A164685 Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 41, 1640, 65600, 2624000, 104960000, 4198400000, 167935999180, 6717439934400, 268697596064820, 10747903790145600, 429916149507936000, 17196645896401920000, 687865832499456000000, 27514633165713408671580
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170760, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[41,1640,65600,2624000,104960000,4198400000,167935999180];; for n in [8..20] do a[n]:=39*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]) -780*a[n-7]; od; Concatenation([1], a); # G. C. Greubel, Sep 15 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^7)/(1-40*t+819*t^7-780*t^8) )); // G. C. Greubel, Sep 15 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^7)/(1-40*t+819*t^7-780*t^8), t, n+1), t, n), n = 0..20); # G. C. Greubel, Sep 15 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^7)/(1-40*t+819*t^7-780*t^8), {t, 0, 20}], t] (* G. C. Greubel, Sep 15 2019 *)
    coxG[{7, 780, -39}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 15 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((1+t)*(1-t^7)/(1-40*t+819*t^7-780*t^8)) \\ G. C. Greubel, Sep 15 2019
    
  • Sage
    def A164685_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^7)/(1-40*t+819*t^7-780*t^8)).list()
    A164685_list(20) # G. C. Greubel, Sep 15 2019
    

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(780*t^7 - 39*t^6 - 39*t^5 - 39*t^4 - 39*t^3 - 39*t^2 - 39*t + 1).

A165979 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874752, 5638330743552, 146596599332001, 3811511582622900, 99099301147958475, 2576581829840760300, 66991127575699606500, 1741769316964025575200
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170746, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^10)/(1 -26*x +350*x^10 -325*x^11) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^10)/(1 -26*x +350*x^10 -325*x^11), {x, 0, 20}], x] (* G. C. Greubel, Apr 20 2016, modified Apr 26 2019 *)
    coxG[{10, 325, -25}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^10)/(1 -26*x +350*x^10 -325*x^11)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^10)/(1 -26*x +350*x^10 -325*x^11)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(325*t^10 - 25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1).
G.f.: (1+x)*(1-x^10)/(1 -26*x +350*x^10 -325*x^11). - G. C. Greubel, Apr 26 2019

A166379 Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.

Original entry on oeis.org

1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479238, 11420230094, 148462991222, 1930018885795, 25090245514152, 326173191668688, 4240251491494200, 55123269386840928, 716602501995344328
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170733, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^11)/(1-13*x+90*x^11-78*x^12) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^11)/(1 -13*x +90*x^11 -78*x^12), {x, 0, 20}], x] (* G. C. Greubel, May 10 2016, modified Apr 26 2019 *)
    coxG[{11,78,-12}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Nov 30 2016 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^11)/(1-13*x+90*x^11-78*x^12)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^11)/(1-13*x+90*x^11-78*x^12)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(78*t^11 - 12*t^10 - 12*t^9 - 12*t^8 - 12*t^7 - 12*t^6 - 12*t^5 - 12*t^4 - 12*t^3 - 12*t^2 - 12*t + 1).
G.f.: (1+x)*(1-x^11)/(1 -13*x +90*x^11 -78*x^12). - G. C. Greubel, Apr 26 2019
a(n) = -78*a(n-11) + 12*Sum_{k=1..10} a(n-k). - Wesley Ivan Hurt, May 06 2021

A166468 Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

Original entry on oeis.org

1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708582, 2125728, 6377136, 19131264, 57393360, 172178784, 516532464, 1549585728, 4648722192, 13946061600, 41837869872, 125512664832, 376535160174, 1129596977628
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^12)/(1-3*x+5*x^12-3*x^13) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^12)/(1 -3*x +5*x^12 -3*x^13), {x, 0, 30}], x ] (* Vincenzo Librandi, Apr 29 2014 *)(* modified by G. C. Greubel, Apr 26 2019 *)
    coxG[{12,3,-2,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 09 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)*(1-x^12)/(1-3*x+5*x^12-3*x^13)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^12)/(1-3*x+5*x^12-3*x^13)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(3*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1).
G.f.: (1+x)*(1-x^12)/(1 -3*x +5*x^12 -3*x^13). - G. C. Greubel, Apr 26 2019
a(n) = -3*a(n-12) + 2*Sum_{k=1..11} a(n-k). - Wesley Ivan Hurt, May 06 2021

A166690 Number of reduced words of length n in Coxeter group on 38 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

Original entry on oeis.org

1, 38, 1406, 52022, 1924814, 71218118, 2635070366, 97497603542, 3607411331054, 133474219248998, 4938546112212926, 182726206151878262, 6760869627619494991, 250152176221921288656, 9255630520211086718568
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170757, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^12)/(1-37*x+702*x^6-666*x^7) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^12)/(1-37*x+702*x^6-666*x^7), {x, 0, 20}], x] (* G. C. Greubel, May 23 2016, modified Apr 26 2019 *)
    coxG[{12, 666, -36}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^12)/(1-37*x+702*x^6-666*x^7)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^12)/(1-37*x+702*x^6-666*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(666*t^12 - 36*t^11 - 36*t^10 - 36*t^9 -36*t^8 -36*t^7 -36*t^6 - 36*t^5 - 36*t^4 - 36*t^3 - 36*t^2 - 36*t + 1).
G.f.: (1+x)*(1-x^12)/(1 -37*x +702*x^6 -666*x^7). - G. C. Greubel, Apr 26 2019
a(n) = -666*a(n-12) + 36*Sum_{k=1..11} a(n-k). - Wesley Ivan Hurt, May 06 2021

A166691 Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

Original entry on oeis.org

1, 39, 1482, 56316, 2140008, 81320304, 3090171552, 117426518976, 4462207721088, 169563893401344, 6443427949251072, 244850262071540736, 9304309958718547227, 353563778431304766468, 13435423580389580056521
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170758, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^12)/(1-38*x+740*x^12-703*x^13) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^12)/(1-38*x+740*x^12-703*x^13), {x, 0, 20}], x] (* G. C. Greubel, May 23 2016, modified Apr 26 2019 *)
    coxG[{12,703,-37}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 10 2017 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^12)/(1-38*x+740*x^12-703*x^13)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^12)/(1-38*x+740*x^12-703*x^13)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(703*t^12 - 37*t^11 - 37*t^10 - 37*t^9 -37*t^8 -37*t^7 -37*t^6 - 37*t^5 - 37*t^4 - 37*t^3 - 37*t^2 - 37*t + 1).
G.f.: (1+x)*(1-x^12)/(1 -38*x +740*x^12 -703*x^13). - G. C. Greubel, Apr 26 2019
a(n) = -703*a(n-12) + 37*Sum_{k=1..11} a(n-k). - Wesley Ivan Hurt, May 06 2021

A167048 Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.

Original entry on oeis.org

1, 18, 306, 5202, 88434, 1503378, 25557426, 434476242, 7386096114, 125563633938, 2134581776946, 36287890208082, 616894133537394, 10487200270135545, 178282404592301664, 3030800878069084224, 51523614927173682720
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170737, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^13)/(1-17*x+152*x^13-136*x^14) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^13)/(1-17*x+152*x^13-136*x^14), {x, 0, 20}], x] (* G. C. Greubel, May 30 2016, modified Apr 26 2019 *)
    coxG[{13, 136, -16}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^13)/(1-17*x+152*x^13-136*x^14)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^13)/(1-17*x+152*x^13-136*x^14)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(136*t^13 - 16*t^12 - 16*t^11 - 16*t^10 - 16*t^9 - 16*t^8 - 16*t^7 - 16*t^6 - 16*t^5 - 16*t^4 - 16*t^3 - 16*t^2 - 16*t + 1).
G.f.: (1+x)*(1-x^13)/(1 - 17*x + 152*x^13 - 136*x^14). - G. C. Greubel, Apr 26 2019
a(n) = -136*a(n-13) + 16*Sum_{k=1..12} a(n-k). - Wesley Ivan Hurt, May 06 2021

A167049 Number of reduced words of length n in Coxeter group on 19 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.

Original entry on oeis.org

1, 19, 342, 6156, 110808, 1994544, 35901792, 646232256, 11632180608, 209379250944, 3768826516992, 67838877305856, 1221099791505408, 21979796247097173, 395636332447746036, 7121453984059373415
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170738, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^13)/(1-18*x+170*x^13-153*x^14) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^13)/(1-18*x+170*x^13-153*x^14), {x, 0, 20}], x] (* G. C. Greubel, May 31 2016, modified Apr 26 2019 *)
    coxG[{13, 153, -17}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^13)/(1-18*x+170*x^13-153*x^14)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^13)/(1-18*x+170*x^13-153*x^14)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(153*t^13 - 17*t^12 - 17*t^11 - 17*t^10 - 17*t^9 - 17*t^8 - 17*t^7 - 17*t^6 - 17*t^5 - 17*t^4 - 17*t^3 - 17*t^2 - 17*t + 1).
G.f.: (1+x)*(1-x^13)/(1 - 18*x + 170*x^13 - 153*x^14). - G. C. Greubel, Apr 26 2019
a(n) = -153*a(n-13) + 17*Sum_{k=1..12} a(n-k). - Wesley Ivan Hurt, May 06 2021

A167942 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874752, 5638330743552, 146596599332352, 3811511582641152, 99099301148669952, 2576581829865418752, 66991127576500887552, 1741769316989023076352
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170746, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-26*x+350*x^16-325*x^17) )); // G. C. Greubel, Sep 08 2023
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^16)/(1-26*t+350*t^16-325*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 08 2023 *)
    coxG[{16,325,-25}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 28 2018 *)
  • SageMath
    def A167942_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-26*x+350*x^16-325*x^17) ).list()
    A167942_list(40) # G. C. Greubel, Sep 08 2023

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 325*t^16 - 25*t^15 - 25*t^14 - 25*t^13 - 25*t^12 - 25*t^11 - 25*t^10 - 25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1).
From G. C. Greubel, Sep 08 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 26*t + 350*t^16 - 325*t^17).
a(n) = 25*Sum_{j=1..15} a(n-j) - 325*a(n-16). (End)

A162760 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 11, 110, 1045, 9900, 93555, 884070, 8353125, 78924780, 745717995, 7045894350, 66572896005, 629011803420, 5943197049075, 56154099352230, 530570136457845, 5013074255082300, 47365865053010955, 447534797632236270
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003953, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    I:=[1,11,110,1045]; [n le 4 select I[n] else 9*Self(n-1) +9*Self(n-2)-45*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Apr 01 2017
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^3)/(1-10*x+54*x^3-45*x^4) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    Join[{1}, LinearRecurrence[{9, 9, -45}, {11, 110, 1045}, 19]] (* Vincenzo Librandi, Apr 01 2017 *)
    CoefficientList[Series[(1+x)*(1-x^3)/(1-10*x+54*x^3-45*x^4), {x,0,20}],x] (* or *) coxG[{3, 45, -9}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^3)/(1-10*x+54*x^3-45*x^4)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^3)/(1-10*x+54*x^3-45*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(45*t^3 - 9*t^2 - 9*t + 1).
G.f.: (1+x)*(1-x^3)/(1 - 10*x + 54*x^3 - 45*x^4). - G. C. Greubel, Apr 26 2019
Previous Showing 51-60 of 1233 results. Next