A164685
Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.
Original entry on oeis.org
1, 41, 1640, 65600, 2624000, 104960000, 4198400000, 167935999180, 6717439934400, 268697596064820, 10747903790145600, 429916149507936000, 17196645896401920000, 687865832499456000000, 27514633165713408671580
Offset: 0
-
a:=[41,1640,65600,2624000,104960000,4198400000,167935999180];; for n in [8..20] do a[n]:=39*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]) -780*a[n-7]; od; Concatenation([1], a); # G. C. Greubel, Sep 15 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^7)/(1-40*t+819*t^7-780*t^8) )); // G. C. Greubel, Sep 15 2019
-
seq(coeff(series((1+t)*(1-t^7)/(1-40*t+819*t^7-780*t^8), t, n+1), t, n), n = 0..20); # G. C. Greubel, Sep 15 2019
-
CoefficientList[Series[(1+t)*(1-t^7)/(1-40*t+819*t^7-780*t^8), {t, 0, 20}], t] (* G. C. Greubel, Sep 15 2019 *)
coxG[{7, 780, -39}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 15 2019 *)
-
my(t='t+O('t^20)); Vec((1+t)*(1-t^7)/(1-40*t+819*t^7-780*t^8)) \\ G. C. Greubel, Sep 15 2019
-
def A164685_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^7)/(1-40*t+819*t^7-780*t^8)).list()
A164685_list(20) # G. C. Greubel, Sep 15 2019
A165979
Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
Original entry on oeis.org
1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874752, 5638330743552, 146596599332001, 3811511582622900, 99099301147958475, 2576581829840760300, 66991127575699606500, 1741769316964025575200
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (25, 25, 25, 25, 25, 25, 25, 25, 25, -325).
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^10)/(1 -26*x +350*x^10 -325*x^11) )); // G. C. Greubel, Apr 26 2019
-
CoefficientList[Series[(1+x)*(1-x^10)/(1 -26*x +350*x^10 -325*x^11), {x, 0, 20}], x] (* G. C. Greubel, Apr 20 2016, modified Apr 26 2019 *)
coxG[{10, 325, -25}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^10)/(1 -26*x +350*x^10 -325*x^11)) \\ G. C. Greubel, Apr 26 2019
-
((1+x)*(1-x^10)/(1 -26*x +350*x^10 -325*x^11)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
A166379
Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
Original entry on oeis.org
1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479238, 11420230094, 148462991222, 1930018885795, 25090245514152, 326173191668688, 4240251491494200, 55123269386840928, 716602501995344328
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (12, 12, 12, 12, 12, 12, 12, 12, 12, 12, -78).
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^11)/(1-13*x+90*x^11-78*x^12) )); // G. C. Greubel, Apr 26 2019
-
CoefficientList[Series[(1+x)*(1-x^11)/(1 -13*x +90*x^11 -78*x^12), {x, 0, 20}], x] (* G. C. Greubel, May 10 2016, modified Apr 26 2019 *)
coxG[{11,78,-12}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Nov 30 2016 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^11)/(1-13*x+90*x^11-78*x^12)) \\ G. C. Greubel, Apr 26 2019
-
((1+x)*(1-x^11)/(1-13*x+90*x^11-78*x^12)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
A166468
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
Original entry on oeis.org
1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708582, 2125728, 6377136, 19131264, 57393360, 172178784, 516532464, 1549585728, 4648722192, 13946061600, 41837869872, 125512664832, 376535160174, 1129596977628
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -3).
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^12)/(1-3*x+5*x^12-3*x^13) )); // G. C. Greubel, Apr 26 2019
-
CoefficientList[Series[(1+x)*(1-x^12)/(1 -3*x +5*x^12 -3*x^13), {x, 0, 30}], x ] (* Vincenzo Librandi, Apr 29 2014 *)(* modified by G. C. Greubel, Apr 26 2019 *)
coxG[{12,3,-2,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 09 2018 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^12)/(1-3*x+5*x^12-3*x^13)) \\ G. C. Greubel, Apr 26 2019
-
((1+x)*(1-x^12)/(1-3*x+5*x^12-3*x^13)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
A166690
Number of reduced words of length n in Coxeter group on 38 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
Original entry on oeis.org
1, 38, 1406, 52022, 1924814, 71218118, 2635070366, 97497603542, 3607411331054, 133474219248998, 4938546112212926, 182726206151878262, 6760869627619494991, 250152176221921288656, 9255630520211086718568
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, -666).
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^12)/(1-37*x+702*x^6-666*x^7) )); // G. C. Greubel, Apr 26 2019
-
CoefficientList[Series[(1+x)*(1-x^12)/(1-37*x+702*x^6-666*x^7), {x, 0, 20}], x] (* G. C. Greubel, May 23 2016, modified Apr 26 2019 *)
coxG[{12, 666, -36}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^12)/(1-37*x+702*x^6-666*x^7)) \\ G. C. Greubel, Apr 26 2019
-
((1+x)*(1-x^12)/(1-37*x+702*x^6-666*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
A166691
Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
Original entry on oeis.org
1, 39, 1482, 56316, 2140008, 81320304, 3090171552, 117426518976, 4462207721088, 169563893401344, 6443427949251072, 244850262071540736, 9304309958718547227, 353563778431304766468, 13435423580389580056521
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, -703).
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^12)/(1-38*x+740*x^12-703*x^13) )); // G. C. Greubel, Apr 26 2019
-
CoefficientList[Series[(1+x)*(1-x^12)/(1-38*x+740*x^12-703*x^13), {x, 0, 20}], x] (* G. C. Greubel, May 23 2016, modified Apr 26 2019 *)
coxG[{12,703,-37}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 10 2017 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^12)/(1-38*x+740*x^12-703*x^13)) \\ G. C. Greubel, Apr 26 2019
-
((1+x)*(1-x^12)/(1-38*x+740*x^12-703*x^13)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
A167048
Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.
Original entry on oeis.org
1, 18, 306, 5202, 88434, 1503378, 25557426, 434476242, 7386096114, 125563633938, 2134581776946, 36287890208082, 616894133537394, 10487200270135545, 178282404592301664, 3030800878069084224, 51523614927173682720
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, -136).
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^13)/(1-17*x+152*x^13-136*x^14) )); // G. C. Greubel, Apr 26 2019
-
CoefficientList[Series[(1+x)*(1-x^13)/(1-17*x+152*x^13-136*x^14), {x, 0, 20}], x] (* G. C. Greubel, May 30 2016, modified Apr 26 2019 *)
coxG[{13, 136, -16}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^13)/(1-17*x+152*x^13-136*x^14)) \\ G. C. Greubel, Apr 26 2019
-
((1+x)*(1-x^13)/(1-17*x+152*x^13-136*x^14)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
A167049
Number of reduced words of length n in Coxeter group on 19 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.
Original entry on oeis.org
1, 19, 342, 6156, 110808, 1994544, 35901792, 646232256, 11632180608, 209379250944, 3768826516992, 67838877305856, 1221099791505408, 21979796247097173, 395636332447746036, 7121453984059373415
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, -153).
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^13)/(1-18*x+170*x^13-153*x^14) )); // G. C. Greubel, Apr 26 2019
-
CoefficientList[Series[(1+x)*(1-x^13)/(1-18*x+170*x^13-153*x^14), {x, 0, 20}], x] (* G. C. Greubel, May 31 2016, modified Apr 26 2019 *)
coxG[{13, 153, -17}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^13)/(1-18*x+170*x^13-153*x^14)) \\ G. C. Greubel, Apr 26 2019
-
((1+x)*(1-x^13)/(1-18*x+170*x^13-153*x^14)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
A167942
Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874752, 5638330743552, 146596599332352, 3811511582641152, 99099301148669952, 2576581829865418752, 66991127576500887552, 1741769316989023076352
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (25,25,25,25,25,25,25,25,25,25,25,25,25,25,25,-325).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-26*x+350*x^16-325*x^17) )); // G. C. Greubel, Sep 08 2023
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-26*t+350*t^16-325*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 08 2023 *)
coxG[{16,325,-25}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 28 2018 *)
-
def A167942_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-26*x+350*x^16-325*x^17) ).list()
A167942_list(40) # G. C. Greubel, Sep 08 2023
A162760
Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
Original entry on oeis.org
1, 11, 110, 1045, 9900, 93555, 884070, 8353125, 78924780, 745717995, 7045894350, 66572896005, 629011803420, 5943197049075, 56154099352230, 530570136457845, 5013074255082300, 47365865053010955, 447534797632236270
Offset: 0
-
I:=[1,11,110,1045]; [n le 4 select I[n] else 9*Self(n-1) +9*Self(n-2)-45*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Apr 01 2017
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^3)/(1-10*x+54*x^3-45*x^4) )); // G. C. Greubel, Apr 26 2019
-
Join[{1}, LinearRecurrence[{9, 9, -45}, {11, 110, 1045}, 19]] (* Vincenzo Librandi, Apr 01 2017 *)
CoefficientList[Series[(1+x)*(1-x^3)/(1-10*x+54*x^3-45*x^4), {x,0,20}],x] (* or *) coxG[{3, 45, -9}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^3)/(1-10*x+54*x^3-45*x^4)) \\ G. C. Greubel, Apr 26 2019
-
((1+x)*(1-x^3)/(1-10*x+54*x^3-45*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
Comments