cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 49 results. Next

A168700 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.

Original entry on oeis.org

1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460544, 295665060514131968, 6504631331310903296, 143101889288839872512
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170742, although the two sequences are eventually different.
First disagreement at index 17: a(17) = 69261314415798498295555, A170742(17) = 69261314415798498295808. - Klaus Brockhaus, Mar 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170742 (G.f.: (1+x)/(1-22*x)).

Programs

  • Mathematica
    CoefficientList[Series[(t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^17 - 21*t^16 - 21*t^15 - 21*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1), {t,0,50}], t] (* G. C. Greubel, Aug 04 2016 *)
    coxG[{17,231,-21}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 18 2024 *)

Formula

G.f.: (t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (231*t^17 - 21*t^16 - 21*t^15 - 21*t^14 - 21*t^13 - 21*t^12 - 21*t^11 -21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 -21*t^5 -21*t^4 -21*t^3 -21*t^2 -21*t +1).

A168748 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.

Original entry on oeis.org

1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460544, 295665060514131968, 6504631331310903296, 143101889288839872512
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170742, although the two sequences are eventually different.
First disagreement at index 18: a(18) = 1523748917147566962507523, A170742(18) = 1523748917147566962507776. - Klaus Brockhaus, Mar 26 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170742 (G.f.: (1+x)/(1-22*x)).

Programs

  • Mathematica
    With[{num=Total[2t^Range[17]]+t^18+1,den=Total[-21 t^Range[17]]+231t^18+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Aug 18 2013 *)
    CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^18 - 21*t^17 - 21*t^16 - 21*t^15 - 21*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 10 2016 *)

Formula

G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^18 - 21*t^17 - 21*t^16 - 21*t^15 - 21*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).

A168796 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I.

Original entry on oeis.org

1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460544, 295665060514131968, 6504631331310903296, 143101889288839872512
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170742, although the two sequences are eventually different.
First disagreement at index 19: a(19) = 33522476177246473175170819, A170742(19) = 33522476177246473175171072. - Klaus Brockhaus, Apr 01 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170742 (G.f.: (1+x)/(1-22*x)).

Programs

  • Mathematica
    coxG[{19,231,-21}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Feb 07 2016 *)
    CoefficientList[Series[(t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^19 - 21*t^18 - 21*t^17 - 21*t^16 - 21*t^15 - 21*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 15 2016 *)

Formula

G.f.: (t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^19 - 21*t^18 - 21*t^17 - 21*t^16 - 21*t^15 - 21*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).

A170368 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^43 = I.

Original entry on oeis.org

1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460544, 295665060514131968, 6504631331310903296, 143101889288839872512
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[42]]+t^43+1,den=Total[-21 t^Range[42]]+231t^43+ 1},CoefficientList[Series[num/den,{t,0,20}],t]] (* Harvey P. Dale, Feb 01 2014 *)

Formula

G.f.: (t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^43 - 21*t^42 - 21*t^41 - 21*t^40 - 21*t^39 - 21*t^38 - 21*t^37 - 21*t^36 - 21*t^35 - 21*t^34 - 21*t^33 - 21*t^32 - 21*t^31 - 21*t^30 - 21*t^29 - 21*t^28 - 21*t^27 - 21*t^26 - 21*t^25 - 21*t^24 - 21*t^23 - 21*t^22 - 21*t^21 - 21*t^20 - 21*t^19 - 21*t^18 - 21*t^17 - 21*t^16 - 21*t^15 - 21*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).

A170704 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^50 = I.

Original entry on oeis.org

1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460544, 295665060514131968, 6504631331310903296, 143101889288839872512
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
About the initial comment, first disagreement is at index 50 and the difference is 253. - Vincenzo Librandi, Dec 08 2012

Programs

  • Mathematica
    With[{num = Total[2 t^Range[49]] + t^50 + 1, den = Total[-21 t^Range[49]] + 231t^50 + 1}, CoefficientList[Series[num/den, {t, 0, 20}], t]] (* Vincenzo Librandi, Dec 08 2012 *)
    coxG[{50,231,-21}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 10 2017 *)

Formula

G.f. (t^50 + 2*t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 +
2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(231*t^50 - 21*t^49 - 21*t^48 - 21*t^47 - 21*t^46 - 21*t^45 -
21*t^44 - 21*t^43 - 21*t^42 - 21*t^41 - 21*t^40 - 21*t^39 - 21*t^38 -
21*t^37 - 21*t^36 - 21*t^35 - 21*t^34 - 21*t^33 - 21*t^32 - 21*t^31 -
21*t^30 - 21*t^29 - 21*t^28 - 21*t^27 - 21*t^26 - 21*t^25 - 21*t^24 -
21*t^23 - 21*t^22 - 21*t^21 - 21*t^20 - 21*t^19 - 21*t^18 - 21*t^17 -
21*t^16 - 21*t^15 - 21*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 -
21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 -
21*t + 1)

A162809 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 23, 506, 10879, 233772, 5020785, 107832648, 2315920761, 49739020254, 1068244419627, 22942674541710, 492739584509403, 10582562979139536, 227281596017492709, 4881324494907605052, 104836155861245820165
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(231*t^3 - 21*t^2 - 21*t + 1)

A163171 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.

Original entry on oeis.org

1, 23, 506, 11132, 244651, 5376756, 118166433, 2596973148, 57074328696, 1254336803181, 27566873759502, 605844081921771, 13314786972244758, 292622404684911840, 6431035802682200787, 141336482898202575984
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^4 + 2 t^3 + 2 t^2 + 2 t + 1)/(231 t^4 - 21 t^3 - 21 t^2 - 21 t + 1), {t, 0, 20}], t] (* Jinyuan Wang, Mar 23 2020 *)

Formula

G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).

A164636 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737539, 57370220292, 1262144724225, 27767181244572, 610877928236268, 13439313120022944, 295664860014655824, 6504626290553815116, 143101764537275790477
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).

A164957 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.

Original entry on oeis.org

1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231171, 1262145080196, 27767191642113, 610878213438108, 13439320636494060, 295665052701694368, 6504631130811427152, 143101884248082720576
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^8 -
21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1)

A165365 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.

Original entry on oeis.org

1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091075, 27767191998084, 610878223835649, 13439320921695900, 295665060218165484, 6504631323498465696, 143101889088340396368
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(231*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 -
21*t^2 - 21*t + 1)
Previous Showing 11-20 of 49 results. Next