A175782 Expansion of 1/(1 - x - x^20 - x^39 + x^40).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 27, 31, 36, 42, 49, 57, 66, 76, 87, 99, 112, 126, 141, 157, 174, 192, 211, 231, 254, 279, 307, 339, 376, 419, 469, 527, 594
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
Crossrefs
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x-x^20-x^39+x^40))); // G. C. Greubel, Nov 03 2018 -
Maple
gf:= 1/(1-x-x^20-x^39+x^40): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..100); # Alois P. Heinz, Jul 27 2012
-
Mathematica
CoefficientList[Series[1/(1 - x - x^20 - x^39 + x^40), {x, 0, 50}], x] LinearRecurrence[{1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1},{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22},70] (* Harvey P. Dale, Jun 30 2023 *)
-
PARI
Vec(O(x^99)+1/(1 - x - x^20 - x^39 + x^40)) \\ N.B.: This yields a vector whose first component v[1] equals a(0), i.e., the offset is shifted by one. - M. F. Hasler, Dec 11 2010
Formula
a(n) = a(n-1) + a(n-20) + a(n-39) - a(n-40). - Franck Maminirina Ramaharo, Oct 31 2018
Comments