A143472 Expansion of 1/(1 - x^3 - x^5 - x^7 + x^10), inverse of a Salem polynomial.
1, 0, 0, 1, 0, 1, 1, 1, 2, 1, 2, 3, 3, 4, 5, 6, 7, 9, 11, 14, 17, 20, 26, 31, 38, 48, 58, 72, 88, 108, 134, 164, 202, 249, 306, 376, 463, 570, 701, 863, 1061, 1306, 1607, 1976, 2433, 2993, 3682, 4531, 5574, 6859, 8439, 10383, 12776, 15719, 19340, 23796
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,1,0,1,0,0,-1).
Crossrefs
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1-x^3-x^5-x^7+x^10))); // G. C. Greubel, Nov 03 2018 -
Mathematica
CoefficientList[Series[1/(1 - x^3 - x^5 - x^7 + x^10), {x, 0, 50}], x]
-
Maxima
makelist(ratcoef(taylor(1/(1 - x^3 - x^5 - x^7 + x^10), x, 0, n), x, n), n, 0, 50); /* Franck Maminirina Ramaharo, Nov 02 2018 */
-
PARI
x='x+O('x^50); Vec(1/(1-x^3-x^5-x^7+x^10)) \\ G. C. Greubel, Nov 03 2018
Formula
G.f.: 1/(1 - x^3 - x^5 - x^7 + x^10). - Colin Barker, Oct 23 2013
a(n) = a(n-3) + a(n-5) + a(n-7) - a(n-10). - Franck Maminirina Ramaharo, Oct 30 2018
Extensions
More terms from Colin Barker, Oct 23 2013
New name after Colin Barker's formula by Franck Maminirina Ramaharo, Nov 03 2018
Comments