cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A176500 a(n) = 2*Farey(Fibonacci(n + 1)) - 3.

Original entry on oeis.org

1, 3, 7, 19, 43, 115, 279, 719, 1879, 4911, 12659, 33235, 86715, 226315, 592767, 1551791, 4060203, 10630767, 27825227, 72843667, 190710291, 499271047, 1307051711, 3421933647, 8958716547, 23453948495, 61403187051, 160755514791, 420862602279, 1101832758583
Offset: 1

Views

Author

Sameen Ahmed Khan, Apr 21 2010

Keywords

Comments

This sequence provides a strict upper bound of the set of equivalent resistances formed by any conceivable network (series/parallel or bridge, or non-planar) of n equal resistors. Consequently it provides an strict upper bound of the sequences: A048211, A153588, A174283, A174284, A174285 and A174286. A176502 provides a better strict upper bound but is harder to compute. [Corrected by Antoine Mathys, Jul 12 2019]
Farey(n) = A005728(n). - Franklin T. Adams-Watters, May 12 2010
The claim that this sequence is a strict upper bound for the number of representable resistance values of any conceivable network is incorrect for networks with more than 11 resistors, in which non-planar configurations can also occur. Whether the sequence provides at least a valid upper bound for planar networks with generalized bridge circuits (A337516) is difficult to decide on the basis of the insufficient number of terms in A174283 and A337516. See the linked illustrations of the respective quotients. - Hugo Pfoertner, Jan 24 2021

Examples

			n = 5, m = Fibonacci(5 + 1) = 8, Farey(8) = 23, 2Farey(m) - 3 = 43.
		

Crossrefs

Programs

  • Magma
    [2*(&+[EulerPhi(k):k in [1..Fibonacci(n+1)]])-1:n in [1..30]]; // Marius A. Burtea, Jul 26 2019
  • Mathematica
    a[n_] := 2 Sum[EulerPhi[k], {k, 1, Fibonacci[n+1]}] - 1;
    Table[an = a[n]; Print[an]; an, {n, 1, 30}] (* Jean-François Alcover, Nov 03 2018, from PARI *)
  • PARI
    a(n) = 2*sum(k=1,fibonacci(n+1),eulerphi(k))-1 \\ Charles R Greathouse IV, Oct 07 2016
    

Formula

a(n) = 2 * A176499(n) - 3.

Extensions

a(26)-a(28) from Sameen Ahmed Khan, May 02 2010
a(29)-a(30) from Antoine Mathys, Aug 06 2018

A176501 a(n) = Farey(m; I) where m = Fibonacci(n + 1) and I = [1/n, 1].

Original entry on oeis.org

1, 2, 4, 9, 19, 50, 122, 317, 837, 2213, 5758, 15236, 40028, 105079, 276627, 727409, 1910685, 5020094, 13180380, 34600740, 90814431, 238288480, 625111687, 1639676484, 4300183922, 11275936787, 29564497466, 77507123132, 203175049457, 532552499826, 1395790412496
Offset: 1

Views

Author

Sameen Ahmed Khan, Apr 21 2010

Keywords

Comments

This sequence arises in the analytically obtained strict upper bound of the set of equivalent resistances formed by any conceivable network (series/parallel or bridge, or non-planar) of n equal resistors. Consequently it provides an strict upper bound of the sequences: A048211, A153588, A174283, A174284, A174285 and A174286. This sequence provides a better strict upper bound than A176499 but is harder to compute. [Corrected by Antoine Mathys, May 07 2019]
From Hugo Pfoertner, Jan 24 2021: (Start)
The claim that this sequence is a strict upper bound for the number of representable resistance values of any conceivable network is wrong. It only applies to purely serial-parallel networks, but it already fails when bridges are allowed, as described in A174283. Even more so if arbitrary nonplanar networks are allowed as in A337517. See the linked illustrations of the respective quotients.
But in contrast to A176499, which at least correctly bounds A048211, the terms a(5), ..., a(9) in this sequence are smaller than the corresponding terms from A048211 (a(n) vs. A048211(n): 19/22, 50/53, 122/131, 317/337, 837/869). (End)

Examples

			n = 5, I = [1/5, 1], m = Fibonacci(5 + 1) = 8, Farey(8) = 23, Farey(8; I) = 19
		

Crossrefs

Programs

  • Mathematica
    a[n_ /; n<4] := 2^(n-1); a[n_] := Module[{m = Fibonacci[n+1], v}, v = Reap[ Do[Sow[j/i], {i, n+1, m}, {j, 1, (i-1)/n}]][[2, 1]]; Total[ EulerPhi[ Range[m]]] - Length[v // Union]];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 23}] (* Jean-François Alcover, Aug 30 2018, after Antoine Mathys *)
  • PARI
    farey(n) = sum(i=1, n, eulerphi(i)) + 1;
    a(n) = my(m=fibonacci(n + 1), count=0); for(b=n+1, m, for(a=1, (b-1)/n, if(gcd(a,b)==1, count++))); farey(m) - 1 - count; \\ Antoine Mathys, May 07 2019

Extensions

a(19)-a(27) from Antoine Mathys, Aug 10 2018
a(28)-a(31) from Antoine Mathys, May 07 2019

A337516 Number of distinct resistances that can be produced using n unit resistors in series, parallel, bridge or fork configurations.

Original entry on oeis.org

1, 2, 4, 9, 23, 57, 151, 421, 1202, 3397, 9498, 25970, 70005, 187259, 500061
Offset: 1

Views

Author

Rainer Rosenthal, Oct 29 2020

Keywords

Comments

Each network with 2, 3 or 4 resistors is made up of series or parallel connected resistors in such a way that the resulting resistances can be computed as Ser(x1,x2) = x1 + x2 (type S) or Par(x1,x2) = 1/(1/x1+1/x2) (type P). The parameters are either 1 Ohm or themselves of type S or P. A048211 counts the different resistances which can be produced as S or P type from n unit resistors. With 5 resistors x1 .. x5 there is the bridge configuration (type B),
A which cannot be computed by functions Ser() and Par().
/ \ The resistance between A and D is given by
x1 x2
/ \ Bri(x1,x2,x3,x4,x5) =
B- x3 - C
\ / x2*x1*x4+x2*x1*x5+x5*x4*x1+x5*x4*x2+x3*(x2+x5)*(x1+x4)
x4 x5 ------------------------------------------------------ .
\ / (x1+x2)*(x4+x5)+x3*(x1+x4+x2+x5)
D
Sequence A174283 counts all resistances of types S, P and B which can be produced with n unit resistors. The next essentially new figuration comes with 7 resistors: the fork (type F), which cannot be computed by functions Ser(), Par() and Bri().
A
/ \
x3 x1
/ \
B- x5 - C
/ \ /
x4 x7 x6
/ \ /
E- x2 - D
The resistance between A and E is given by
Frk(x1,x2,x3,x4,x5,x6,x7) =
x1*x3*x4*x7+x1*x3*x4*x5+x1*x3*x2*x7+x1*x3*x2*x5+x2*x4*x3*x7+x2*x4*x3*x5+
x2*x4*x1*x7+x2*x4*x1*x5+x5*x7*x1*x3+x5*x7*x1*x4+x5*x7*x2*x3+x5*x7*x2*x4+
x6*x1*x3*x7+x6*x1*x3*x2+x6*x1*x3*x4+x6*x5*x7*x3+x6*x5*x2*x3+x6*x3*x4*x5+
x6*x3*x4*x7+x6*x1*x4*x7+x6*x5*x7*x4+x6*x2*x4*x3+x6*x2*x4*x1+x6*x5*x2*x4
------------------------------------------------------------------------ .
x3*x4*x7+x3*x4*x5+x2*x3*x7+x5*x2*x3+x1*x4*x7+x5*x1*x4+x1*x2*x7+
x1*x2*x5+x5*x7*x3+x5*x7*x4+x5*x7*x1+x5*x7*x2+x6*x3*x7+x6*x2*x3+
x6*x3*x4+x6*x1*x7+x6*x1*x2+x6*x1*x4+x6*x5*x7+x6*x5*x2+x6*x4*x5
This sequence A337516 counts all resistances of type S, P, B or F which can be produced with n unit resistors.

Examples

			a(1) through a(6) are identical with A174283 since a fork needs at least 7 resistors. a(7) is also equal to A174283(7) because the fork with 7 unit resistors has resistance 8/7, but this is already an element of SetA174283(7).
a(8) = 421 has six extra resistances {16/17, 40/29, 35/34, 37/29, 35/31, 37/32} which are the result of resistance 2 or 1/2 as any of the resistances x1 .. x7 except for x6.
		

Crossrefs

Programs

A338573 Array read by ascending antidiagonals: T(m,n) (m, n >= 1) is the minimum number of unit resistors needed to produce resistance m/n.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 4, 3, 3, 4, 5, 2, 1, 2, 5, 6, 4, 4, 4, 4, 6, 7, 3, 4, 1, 4, 3, 7, 8, 5, 2, 5, 5, 2, 5, 8, 9, 4, 5, 3, 1, 3, 5, 4, 9, 10, 6, 5, 5, 5, 5, 5, 5, 6, 10, 11, 5, 3, 2, 5, 1, 5, 2, 3, 5, 11, 12, 7, 6, 6, 5, 5, 5, 5, 6, 6, 7, 12, 13, 6, 6, 4, 6, 4, 1, 4, 6, 4, 6, 6, 13
Offset: 1

Views

Author

Rainer Rosenthal, Nov 05 2020

Keywords

Comments

Karnofsky (2004, p. 5): "[...] if some circuit has resistance m/n then some other circuit likely has n/m. In fact, for 9 or fewer resistors, this symmetry is perfect. However, for 10 resistors the following values are achieved, but not their inverses: 95/106, 101/109, 98/103, 97/98, 103/101, 97/86, 110/91, 103/83, 130/101, 103/80, 115/89, 106/77, 109/77, 98/67, 101/67". That means, that T(m,n) = T(n,m), if T(m,n) <= 9.
This starts with the values of A113881, but the Karnofsky comment says that T(n,m) is not symmetric, whereas the count of tiles in A113881 is. - R. J. Mathar, Nov 06 2020
The first difference where T(m,n) = T(n,m), but differs from the corresponding entry of A113881 occurs for (n,m) = (154,167) and (n,m) = (167,154), both representable by networks with non-planar graphs of 11 resistors, whereas A113881 counts 12 tiles. See Pfoertner link for illustration of more differences. - Hugo Pfoertner, Nov 13 2020

Examples

			T(1,2) = 2: at least 2 unit resistors in parallel are needed for resistance 1/2.
T(2,1) = 2: at least 2 unit resistors in series are needed for resistance 2 = 2/1.
T(11,13) = 6: the following "bridge" has resistance Bri(Par(1,1),1,1,1,1) = 11/13 (see A337516 for definitions):
.
                  (+)
                  / \
              ---*   \
             /  /     \
           (1)(1)     (1)
             \ |       |
              \|       |
               *--(1)--*
                \     /
                (1) (1)
                  \ /
                  (-)
.
T(13,11) = 6: Bri(Ser(1,1),1,1,1,1) = 13/11.
T(95,106) = 10, but T(106,95) > 10: Karnofsky (2004, p. 5), see comment.
		

References

  • Technology Review's Puzzle Corner, How many different resistances can be obtained by combining 10 one ohm resistors? Oct 3, 2003.

Crossrefs

Non-reciprocal ratios: A338601/A338602 (10 resistors), A338581/A338591 (11 resistors), A338582/A338592 (12 resistors).

A338487 a(n) is the number of non-isomorphic, serial/parallel indecomposable resistor networks with n edges, n >= 5, allowing dead ends.

Original entry on oeis.org

1, 5, 36, 225, 1453, 9228, 58701, 372695, 2370155, 15117459, 96868355, 624326820, 4051597971, 26496771687, 174749567296, 1162909625384, 7812487626519, 53005074235282, 363305517314289, 2516343623698964, 17615995074375601, 124669825295709879, 892060223018406365
Offset: 5

Views

Author

Rainer Rosenthal and Hugo Pfoertner, Oct 30 2020

Keywords

Comments

A connected multigraph G with a selected pair P of nodes can be used to represent a resistor network. The edges represent resistors, and the total resistance is measured between the selected nodes. It is possible to construct complex networks using only serial or parallel combinations, but the more nodes and edges are involved, the more networks of a different kind can be found. They cannot be decomposed into serial/parallel elements. The sequence is on page 2 of the paper describing the computation of A180414 (see the Joel Karnofsky link).
Karnofsky claims that he systematically increased the number of edges by three basic operations, C, D, and E, defined in A338999, i.e., he claims to have counted the CDE-descendants of the simplest h-graph (the "bridge," see the example section). Numbers given in his paper are 1, 5, 37, 226, 1460, 9235, which is slightly off (see A339386). The difference seems to stem from the "dangling parts," as he calls them in his "addendum," so they don't affect the computation of different resistances in A180414. - Rainer Rosenthal, Dec 02 2020

Examples

			a(5) = 1. The only serial/parallel nondecomposable network with 5 resistors:
.
                      (+)-----A
     The "bridge"            / \
     see A337516            B---C
                             \ /
                      (-)-----Z
.
a(6) = 5. Constructed from the bridge with 5 resistors.
Allowed ways of adding a new edge are:
* an existing resistor is replaced by two parallel (N1, N2).
* a new resistor is appended (N3).
* an existing resistor is replaced by two serial (N4, N5).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
                    .                   .
         .-A        .         A         .         A
        / / \       .        / \        .   D    / \
       / /   \      .       /   \       .   |   /   \
      / /     \     .      /     \      .   |  /     \
     | /       \    .     /       \     .   | /       \
     |/         \   .    /.-------.\    .   |/         \
     B-----------C  .   B.         .C   .   B-----------C
      \         /   .    \`-------´/    .    \         /
       \       /    .     \       /     .     \       /
        \     /     .      \     /      .      \     /
         \   /      .       \   /       .       \   /
          \ /       .        \ /        .        \ /
           Z        .         Z         .         Z
                    .                   .
     N1: new edge   .   N2: new edge    .  N3: new node D
           A-B      .         B-C       .   with edge B-D
                    .                   .
  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
                    .
           A        .         A
          / \       .        / \
         /   \      .       /   \
        D     \     .      /     \
       /       \    .     /       \
      /         \   .    /         \
     B-----------C  .   B-----D-----C
      \         /   .    \         /
       \       /    .     \       /
        \     /     .      \     /
         \   /      .       \   /
          \ /       .        \ /
           Z        .         Z
                    .
    N4: new node D  .  N5: new node D
     A-B now A-D-B  .   B-C now B-D-C
                    .
. . . . . . . . . . . . . . . . . . . . .
a(7) = 36. There are 24 interesting networks without dead ends.
See the pdf document with their description in the link section.
		

References

  • Technology Review's Puzzle Corner, How many different resistances can be obtained by combining 10 one ohm resistors? Oct 3, 2003.

Crossrefs

For graphs with two distinguished nodes see A304074.

Programs

  • Maple
    SetA338487(5) := {"011111"}: # "bridge" adjacency matrix coded
    for n from 6 to MAXEDGES do
       SetA338487(n) := C_D_E(SetA338487(n-1));  # see link section
    od:
    seq(nops(SetA338487(n)),n=1..MAXEDGES); # Rainer Rosenthal, Dec 02 2020

Extensions

a(10)-a(27) from Andrew Howroyd, Dec 02 2020

A176497 a(n) is the cardinality of the "Cross Set" which is the subset of distinct resistances that can be produced by a circuit of n unit resistors using only series or parallel combinations which cannot be decomposed as a single unit resistor in either series or parallel with a circuit of n-1 unit resistors.

Original entry on oeis.org

0, 0, 0, 1, 4, 9, 25, 75, 195, 475, 1265, 3135, 7983, 19697, 50003, 126163, 317629, 802945, 2035619, 5158039, 13084381, 33240845, 84478199, 214717585, 546235003, 1389896683, 3537930077, 9007910913, 22942258567, 58444273501
Offset: 1

Views

Author

Sameen Ahmed Khan, Apr 21 2010

Keywords

Comments

This sequence arises in the decomposition of the sets A(n + 1) of equivalent resistances, when n equal resistors are combined in series/parallel, into series parallel and cross sets respectively. The order of the set A(n) of equivalent resistances when n resistors are combined in series/parallel is given by the Sequence A048211: 1, 2, 4, 9, 22, 53, 131, 337, 869, ... Treating the elements of A(n) as single blocks the (n + 1)th resistor can be added either in series or in parallel.
We call these two sets as series set and parallel set respectively. One can also add the (n + 1)th resistor somewhere within the A(n) blocks, and we call this set as the cross set. The series and the parallel sets each have exactly A(n) number of configurations and the same number of equivalent resistances. All the elements of the parallel set are strictly less than 1 and that of the series set are strictly greater than 1. These two disjoint sets contribute 2*A(n) number of elements to A(n + 1) and are the source of 2n. It is the cross set which takes the count beyond 2^n to 2.53^n numerically (up to n = 22) and maximally to 2.61^n, strictly fixed by the Farey scheme. The cross set is not straightforward, as it is generated by placing the (n + 1)th resistor anywhere within the blocks of A(n). The order of the cross set is A(n + 1) - 2*A(n) leading to this sequence.

Examples

			A(1) has no cross set and the first term is defined to be zero; the cross sets for n = 2 and n = 3 are empty hence the second and third term are each zero. Noting that A(3) = 4 and A(4) = 9, the fourth term is 1. The fifth term is 4.
		

Crossrefs

Formula

a(n) = A048211(n) - 2*A048211(n-1).

Extensions

a(23) from Sameen Ahmed Khan, May 02 2010
a(24)-a(25) from Antoine Mathys, Mar 19 2017
a(26)-a(30) from Antoine Mathys, Dec 08 2024
Edited by Andrew Howroyd, Dec 08 2024

A338401 a(n) is the numerator of the resistance R(n) = a(n)/A338402(n) of a triangular network of 3*n*(n+1)/2 one Ohm resistors in a hexagonal lattice arrangement.

Original entry on oeis.org

2, 10, 10, 206, 3326, 43118, 150806, 11591578, 436494606, 1008712015454, 382034633808890, 13187511533010430, 2111825680430510462, 171204772756285452656378, 89579048665281690355286, 1013412795315891086553473628734, 20023655015717377508089133638478, 24678955315461926144059519221489609194
Offset: 1

Views

Author

Hugo Pfoertner, Oct 24 2020

Keywords

Comments

The resistance is measured between two corners of the triangular region.

Examples

			R(1) = a(1)/A338402(1) = 2/3,
R(2) = a(2)/A338402(2) = 10/9,
R(4) = a(4)/A338402(4) = 206/123.
a(3) = 10: The following network of A045943(3) = 18 one Ohm resistors has a resistance of R(3) = 10/7 Ohm, i.e., the current I driven by the voltage of 1 Volt is 7/10 = A338402(3)/a(3) Ampere.
.
                       O
                    __/ \_
                   / /   \ \
                  /1/     \1\
                 /_/       \_\
                 /   _____   \
                O---|__1__|---O
             __/ \_        __/ \_
            / /   \ \     / /   \ \
           /1/     \1\   /1/     \1\
          /_/       \_\ /_/       \_\
          /   _____   \ /   _____   \
         O---|__1__|---O---|__1__|---O
      __/ \__       __/ \__       __/ \_
     / /   \ \     / /   \ \     / /   \ \
    /1/     \1\   /1/     \1\   /1/     \1\
   /_/       \_\ /_/       \_\ /_/       \_\
   /   _____   \ /   _____   \ /   _____   \
  O---|__1__|---O---|__1__|---O---|__1__|---O
  |                                         |
  |                 V = 1 Volt              |
  |                     |                   |
   -------------------| |-- I=1/R Ampere ---
                        |
.
With a numbering of the resistors as shown in the following diagram,
.
              O
             / \
           15  18
           /     \
          O--14---O
         / \     / \
        7   9  13  17
       /     \ /     \
      O-- 6---O--12---O
     / \     / \     / \
    2   3   5   8  11  16
   /     \ /     \ /     \
  O---1---O---4---O--10---O
  |______1 Volt__I=I19____|
.
the currents in Amperes through the 18 resistors, and the current I=I19 through the voltage source of 1 Volt, are [11/30, 1/3, 1/30, 4/15, 2/15, 1/6, 2/15, 2/15, 1/30, 11/30, 1/30, 1/6, 1/30, 1/15, 1/30, 1/3, 2/15, 1/30, 7/10].
		

Crossrefs

Programs

  • PARI
    a33840_1_2(n)={my(md=3*n*(n+1)/2+1,
    T1=matrix(n,n),T2=matrix(n,n),T3=matrix(n,n),
    M=matrix(md,md,i,j,0),U=vector(md),
    valid(i,j)=i>0&&i<=n&&j>0&&j<=n&&i>=j,k=0,neq=1);
    \\ List of edges
    for(i=1,n,for(j=1,i,T1[i,j]=k++;T2[i,j]=k++;T3[i,j]=k++));
    \\ In- and outflow of current at all nodes
    \\ lower left triangle with inflow of current from source of voltage
    M[1,1]=-1;M[1,2]=-1;M[1,md]=1;
    \\ loops over lower left corners of triangles
    for(i=2,n+1,for(j=1,i,
    \\ exclude node at top of triangle
    if(j
    				

A340920 a(n) is the number of distinct resistances that can be produced from a planar circuit with exactly n unit resistors.

Original entry on oeis.org

1, 1, 2, 4, 9, 23, 57, 151, 427, 1263, 3807, 11549, 34843, 104459, 311317, 928719, 2776247, 8320757, 24967341, 74985337
Offset: 0

Views

Author

Hugo Pfoertner and Rainer Rosenthal, Feb 14 2021

Keywords

Examples

			a(10) = 3807, whereas A337517(10) = 3823. The difference of 16 resistances results from the 15 terms of A338601/A338602 and the resistance 34/27 not representable by a planar network of 10 resistors, whereas it (but not 27/34) can be represented by a nonplanar network of 10 resistors.
		

Crossrefs

Programs

Formula

a(n) = A337517(n) for n <= 9, a(n) < A337517(n) for n >= 10.

Extensions

a(19) from Hugo Pfoertner, Mar 15 2021

A341536 Number of distinct resistances that can be produced using at most n unit resistors in series, parallel, bridge or fork configurations.

Original entry on oeis.org

1, 2, 4, 8, 16, 36, 80, 194, 500, 1342, 3623, 9835, 26412, 70505, 187805, 500627
Offset: 0

Views

Author

Rainer Rosenthal, Feb 14 2021

Keywords

Comments

Cumulative sequence based on A337516.

Crossrefs

Previous Showing 11-19 of 19 results.