cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A277646 Triangle T(n,k) = floor(n^2/k) for 1 <= k <= n^2, read by rows.

Original entry on oeis.org

1, 4, 2, 1, 1, 9, 4, 3, 2, 1, 1, 1, 1, 1, 16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 25, 12, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 36, 18, 12, 9, 7, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 49, 24, 16, 12, 9, 8, 7, 6
Offset: 1

Views

Author

Jason Kimberley, Nov 09 2016

Keywords

Examples

			The first five rows of the triangle are:
1;
4, 2, 1, 1;
9, 4, 3, 2, 1, 1, 1, 1, 1;
16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
25, 12, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Cf. Related triangles: A010766, A277647, A277648.
Rows of this triangle (with infinite trailing zeros):
T(1,k) = A000007(k-1),
T(2,k) = A033324(k),
T(3,k) = A033329(k),
T(4,k) = A033336(k),
T(5,k) = A033345(k),
T(6,k) = A033356(k),
T(7,k) = A033369(k),
T(8,k) = A033384(k),
T(9,k) = A033401(k),
T(10,k) = A033420(k),
T(100,k) = A033422(k),
T(10^3,k) = A033426(k),
T(10^4,k) = A033424(k).
Columns of this triangle:
T(n,1) = A000290(n),
T(n,2) = A007590(n),
T(n,3) = A000212(n),
T(n,4) = A002620(n),
T(n,5) = A118015(n),
T(n,6) = A056827(n),
T(n,7) = A056834(n),
T(n,8) = A130519(n+1),
T(n,9) = A056838(n),
T(n,10)= A056865(n),
T(n,12)= A174709(n+2).

Programs

  • Magma
    A277646:=func;
    [A277646(n,k):k in[1..n^2],n in[1..7]];
  • Mathematica
    Table[Floor[n^2/k], {n, 7}, {k, n^2}] // Flatten (* Michael De Vlieger, Nov 24 2016 *)

Formula

T(n,k) = A010766(n^2,k).

A134546 Triangle read by rows: T(n, k) = Sum_{j=0..n} floor(j / k).

Original entry on oeis.org

1, 3, 1, 6, 2, 1, 10, 4, 2, 1, 15, 6, 3, 2, 1, 21, 9, 5, 3, 2, 1, 28, 12, 7, 4, 3, 2, 1, 36, 16, 9, 6, 4, 3, 2, 1, 45, 20, 12, 8, 5, 4, 3, 2, 1, 55, 25, 15, 10, 7, 5, 4, 3, 2, 1, 66, 30, 18, 12, 9, 6, 5, 4, 3, 2, 1, 78, 36, 22, 15, 11, 8, 6, 5, 4, 3, 2, 1, 91, 42, 26, 18, 13, 10, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Oct 31 2007

Keywords

Comments

From Bob Selcoe, Aug 08 2016: (Start)
Columns are partial sums of k-repeating increasing positive integers:
Column 1 is {1+2+3+4+5+...} = A000217 (triangular numbers);
Column 2 is {1+1+2+2+3+3+4+4+...} = A002620 (quarter-squares);
Column 3 is {1+1+1+2+2+2+3+3+3+...} = A130518.
Columns k = 4..7 are A130519, A130520, A174709 and A174738, respectively.
T(n, k) is the number of positive multiples of k which can be expressed as i-j, {i=1..n; j=0..n-1}. So for example, T(5, 2) = 6 because there are 6 ways to express i-j {i<=5} as a multiple of 2: {5-3, 4-2, 3-1, 2-0, 5-1 and 4-0}. (End)
Conjecture: For T(n, k) n >= k^(3/2), there is at least one prime in the interval [T(n-1, k+1), T(n, k)]. - Bob Selcoe, Aug 21 2016
Theorem: For n >= 3*k, T(n, k) is composite. - Daniel Hoying, Jul 08 2020

Examples

			The triangle T(n, k) begins:
   n\k  1   2   3   4  5  6  7  8  9  10 ...
   1:   1
   2:   3   1
   3:   6   2   1
   4:  10   4   2   1
   5:  15   6   3   2  1
   6:  21   9   5   3  2  1
   7:  28  12   7   4  3  2  1
   8:  36  16   9   6  4  3  2  1
   9:  45  20  12   8  5  4  3  2  1
  10:  55  25  15  10  7  5  4  3  2   1
... Reformatted. - _Wolfdieter Lang_, Feb 04 2015
T(10,3) = 15: 3*floor(10/3)*floor(13/3)/2 - floor(10/3)*(3-1 - 13 mod 3) = 3*3*4/2 - 3*(3-1-1) = 18 - 3 = 15. - _Bob Selcoe_, Aug 21 2016
		

Crossrefs

Cf. A078567 (row sums), A000217 (column 1).

Programs

  • Maple
    T := proc(n, k) option remember: `if`(n = k, 1, T(n-1, k) + iquo(n,k)) end:
    seq(seq(T(n,k), k=1..n),n=1..16); # Peter Luschny, May 26 2020
  • Mathematica
    nn = 12; f[w_] := Map[PadRight[#, nn] &, w]; MapIndexed[Take[#1, First@ #2] &, f@ Table[Reverse@ Range@ n, {n, nn}].f@ Table[Boole@ Divisible[n, #] & /@ Range@ n, {n, nn}]] // Flatten (* Michael De Vlieger, Aug 10 2016 *)
  • PARI
    t(n, k) = if (k>n, 0, if (n==1, 1, t(n-1, k) + n\k));
    tabl(nn) = {m = matrix(nn, nn, n , k, t(n,k)); for (n=1, nn, for (k=1, n, print1(m[n, k], ", ");); print(););} \\ Michel Marcus, Jan 18 2015
    
  • PARI
    trg(nn) = {ma = matrix(nn, nn, n, k, if (k<=n, n-k+1, 0)); mb = matrix(nn, nn, n, k, if (k<=n, !(n%k), 0)); ma*mb;} \\ Michel Marcus, Jan 20 2015

Formula

Original definition: T = A004736 * A051731 as infinite lower triangular matrices.
In other words: T(n, k) = Sum_{m=k..n} A004736(n, m)*A051731(m, k).
T(n, k) = 0 if n < k, T(1, 1) = 1, and T(n, k) = T(n-1, k) + floor(n/k), for n >= 2. - Richard R. Forberg, Jan 17 2015
T(n, k) = k*floor(n/k)*floor((n+k)/k)/2 - floor(n/k)*(k-1-(n mod k)). - Bob Selcoe, Aug 21 2016
T(n, k) = k*A000217(b) + (b+1)*[(n +1)-(b + 1)*k] for 1 <= k <= floor[(n + 1) / 2] where b = floor[(n - k + 1) / k], T(n, k) = n-k+1 for floor[(n + 1) / 2] < k <= n and T(n, k) = 0 for k > n. - Henri Gonin, May 12 2020
T(n, k) = (-k/2)*floor(n/k)^2+(n-k/2+1)*floor(n/k). - Daniel Hoying, May 25 2020
From Daniel Hoying, Jul 06 2020: (Start)
T(m + 2*n - 1, m + n) = n for n > 0, m >= 0.
T(3*m + 3*ceiling((n-3)/6) + (n+1)/2, 2*m + 2*ceiling((n-3)/6) + 1) = n for n > 0, n odd, 0 <= m <= floor(n/3).
T(3*m + 3*ceiling(n/6) + n/2 - 1, 2*m + 2*ceiling(n/6)) = n for n > 0, n even, 0 <= m <= floor(n/3). (End)

Extensions

Edited. Name clarified. Formulas rewritten. - Wolfdieter Lang, Feb 04 2015
Corrected and extended by Michael De Vlieger, Aug 10 2016
Edited and new name from Peter Luschny, Apr 02 2025

A221912 Partial sums of floor(n/12).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008730.

Examples

			..0....0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
...
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Floor[Range[0,70]/12]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,0,0,1,2},70] (* Harvey P. Dale, Mar 23 2015 *)

Formula

a(12n) = A051866(n).
a(12n+1) = A139267(n).
a(12n+2) = A094159(n).
a(12n+3) = A033579(n).
a(12n+4) = A049452(n).
a(12n+5) = A033581(n).
a(12n+6) = A049453(n).
a(12n+7) = A033580(n).
a(12n+8) = A195319(n).
a(12n+9) = A202804(n).
a(12n+10) = A211014(n).
a(12n+11) = A049598(n).
G.f.: x^12/((1-x)^2*(1-x^12)).
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=0, a(7)=0, a(8)=0, a(9)=0, a(10)=0, a(11)=0, a(12)=1, a(13)=2, a(n)=2*a(n-1)- a(n-2)+ a(n-12)- 2*a(n-13)+ a(n-14). - Harvey P. Dale, Mar 23 2015

A269445 a(n) = Sum_{k=0..n} floor(k/13).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 27 2016

Keywords

Comments

Partial sums of A090620.
More generally, the ordinary generating function for the Sum_{k=0..n} floor(k/m) is x^m/((1 - x^m)*(1 - x)^2).

Crossrefs

Cf. A090620.
Cf. similar sequences of Sum_{k=0..n} floor(k/m): A002620 (m=2), A130518 (m=3), A130519 (m=4), A130520 (m=5), A174709 (m=6), A174738 (m=7), A118729 (m=8), A218470 (m=9), A131242 (m=10), A218530 (m=11), A221912 (m=12), this sequence (m=13).

Programs

  • Mathematica
    Table[Sum[Floor[k/13], {k, 0, n}], {n, 0, 73}]
    LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -2, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2}, 74]

Formula

G.f.: x^13/((1 - x^13)*(1 - x)^2).
a(n) = 2*a(n-1) - a(n-2) + a(n-13) - 2*a(n-14) + a(n-15).
Previous Showing 11-14 of 14 results.