cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A351018 Number of integer compositions of n with all distinct even-indexed parts and all distinct odd-indexed parts.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 18, 27, 46, 77, 122, 191, 326, 497, 786, 1207, 1942, 2905, 4498, 6703, 10574, 15597, 23754, 35043, 52422, 78369, 115522, 169499, 248150, 360521, 532466, 768275, 1116126, 1606669, 2314426, 3301879, 4777078, 6772657, 9677138, 13688079, 19406214
Offset: 0

Views

Author

Gus Wiseman, Feb 09 2022

Keywords

Comments

Also the number of binary words of length n starting with 1 and having all distinct runs (ranked by A175413, counted by A351016).

Examples

			The a(1) = 1 through a(6) = 18 compositions:
  (1)  (2)    (3)    (4)      (5)      (6)
       (1,1)  (1,2)  (1,3)    (1,4)    (1,5)
              (2,1)  (2,2)    (2,3)    (2,4)
                     (3,1)    (3,2)    (3,3)
                     (1,1,2)  (4,1)    (4,2)
                     (2,1,1)  (1,1,3)  (5,1)
                              (1,2,2)  (1,1,4)
                              (2,2,1)  (1,2,3)
                              (3,1,1)  (1,3,2)
                                       (2,1,3)
                                       (2,3,1)
                                       (3,1,2)
                                       (3,2,1)
                                       (4,1,1)
                                       (1,1,2,2)
                                       (1,2,2,1)
                                       (2,1,1,2)
                                       (2,2,1,1)
		

Crossrefs

The case of partitions is A000726.
The version for run-lengths instead of runs is A032020.
These words are ranked by A175413.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A059966 counts Lyndon compositions, necklaces A008965, aperiodic A000740.
A116608 counts compositions by number of distinct parts.
A238130 and A238279 count compositions by number of runs.
A242882 counts compositions with distinct multiplicities.
A297770 counts distinct runs in binary expansion.
A325545 counts compositions with distinct differences.
A329738 counts compositions with equal run-lengths.
A329744 counts compositions by runs-resistance.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    Table[Length[Select[Tuples[{0,1},n],#=={}||First[#]==1&&UnsameQ@@Split[#]&]],{n,0,10}]
  • PARI
    P(n)=prod(k=1, n, 1 + y*x^k + O(x*x^n));
    seq(n)=my(p=P(n)); Vec(sum(k=0, n, polcoef(p,k\2,y)*(k\2)!*polcoef(p,(k+1)\2,y)*((k+1)\2)!)) \\ Andrew Howroyd, Feb 11 2022

Formula

a(n>0) = A351016(n)/2.
G.f.: Sum_{k>=0} floor(k/2)! * ceiling(k/2)! * ([y^floor(k/2)] P(x,y)) * ([y^ceiling(k/2)] P(x,y)), where P(x,y) = Product_{k>=1} 1 + y*x^k. - Andrew Howroyd, Feb 11 2022

Extensions

Terms a(21) and beyond from Andrew Howroyd, Feb 11 2022

A351291 Numbers k such that the k-th composition in standard order does not have all distinct runs.

Original entry on oeis.org

13, 22, 25, 45, 46, 49, 53, 54, 59, 76, 77, 82, 89, 91, 93, 94, 97, 101, 102, 105, 108, 109, 110, 115, 118, 141, 148, 150, 153, 156, 162, 165, 166, 173, 177, 178, 180, 181, 182, 183, 187, 189, 190, 193, 197, 198, 201, 204, 205, 209, 210, 213, 214, 216, 217
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
  13:     1101  (1,2,1)
  22:    10110  (2,1,2)
  25:    11001  (1,3,1)
  45:   101101  (2,1,2,1)
  46:   101110  (2,1,1,2)
  49:   110001  (1,4,1)
  53:   110101  (1,2,2,1)
  54:   110110  (1,2,1,2)
  59:   111011  (1,1,2,1,1)
  76:  1001100  (3,1,3)
  77:  1001101  (3,1,2,1)
  82:  1010010  (2,3,2)
  89:  1011001  (2,1,3,1)
  91:  1011011  (2,1,2,1,1)
  93:  1011101  (2,1,1,2,1)
  94:  1011110  (2,1,1,1,2)
		

Crossrefs

The version for Heinz numbers of partitions is A130092, complement A130091.
Normal multisets with a permutation of this type appear to be A283353.
Partitions w/o permutations of this type are A351204, complement A351203.
The version using binary expansions is A351205, complement A175413.
The complement is A351290, counted by A351013.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has all distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612, counted by A003242.
A345167 ranks alternating compositions, counted by A025047.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions (A066099, reverse A228351):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!UnsameQ@@Split[stc[#]]&]

A353744 Numbers k such that the k-th composition in standard order has all equal run-lengths.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18, 20, 22, 24, 25, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 45, 48, 49, 50, 52, 54, 58, 63, 64, 65, 66, 68, 69, 70, 72, 76, 77, 80, 81, 82, 88, 89, 96, 97, 98, 101, 102, 104, 105, 108, 109, 127, 128
Offset: 1

Views

Author

Gus Wiseman, Jun 11 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 2362 in standard order is (3,3,1,1,2,2), with run-lengths (2,2,2), so 2362 is in the sequence.
		

Crossrefs

Standard compositions are listed by A066099.
The version for partitions is A072774, counted by A047966.
These compositions are counted by A329738.
For distinct instead of equal run-lengths we have A351596.
For run-sums instead of lengths we have A353848, counted by A353851.
For distinct run-sums we have A353852, counted by A353850.
A003242 counts anti-run compositions, ranked by A333489.
A005811 counts runs in binary expansion.
A300273 ranks collapsible partitions, counted by A275870.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353847 represents the composition run-sum transformation.
A353853-A353859 pertain to composition run-sum trajectory.
A353860 counts collapsible compositions.
A353833 ranks partitions with all equal run-sums, counted by A304442.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],SameQ@@Length/@Split[stc[#]]&]

A351201 Numbers whose multiset of prime factors has a permutation without all distinct runs.

Original entry on oeis.org

12, 18, 20, 28, 36, 44, 45, 48, 50, 52, 60, 63, 68, 72, 75, 76, 80, 84, 90, 92, 98, 99, 100, 108, 112, 116, 117, 120, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 162, 164, 168, 171, 172, 175, 176, 180, 188, 192, 196, 198, 200, 204, 207, 208, 212, 216
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2022

Keywords

Examples

			The prime factors of 80 are {2,2,2,2,5} and the permutation (2,2,5,2,2) has runs (2,2), (5), and (2,2), which are not all distinct, so 80 is in the sequence. On the other hand, 24 has prime factors {2,2,2,3}, and all four permutations (3,2,2,2), (2,3,2,2), (2,2,3,2), (2,2,2,3) have distinct runs, so 24 is not in the sequence.
The terms and their prime indices begin:
     12: (2,1,1)         76: (8,1,1)        132: (5,2,1,1)
     18: (2,2,1)         80: (3,1,1,1,1)    140: (4,3,1,1)
     20: (3,1,1)         84: (4,2,1,1)      144: (2,2,1,1,1,1)
     28: (4,1,1)         90: (3,2,2,1)      147: (4,4,2)
     36: (2,2,1,1)       92: (9,1,1)        148: (12,1,1)
     44: (5,1,1)         98: (4,4,1)        150: (3,3,2,1)
     45: (3,2,2)         99: (5,2,2)        153: (7,2,2)
     48: (2,1,1,1,1)    100: (3,3,1,1)      156: (6,2,1,1)
     50: (3,3,1)        108: (2,2,2,1,1)    162: (2,2,2,2,1)
     52: (6,1,1)        112: (4,1,1,1,1)    164: (13,1,1)
     60: (3,2,1,1)      116: (10,1,1)       168: (4,2,1,1,1)
     63: (4,2,2)        117: (6,2,2)        171: (8,2,2)
     68: (7,1,1)        120: (3,2,1,1,1)    172: (14,1,1)
     72: (2,2,1,1,1)    124: (11,1,1)       175: (4,3,3)
     75: (3,3,2)        126: (4,2,2,1)      176: (5,1,1,1,1)
		

Crossrefs

The version for run-lengths instead of runs is A024619.
These permutations are counted by A351202.
These rank the partitions counted by A351203, complement A351204.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A056239 adds up prime indices, row sums of A112798.
A283353 counts normal multisets with a permutation w/o all distinct runs.
A297770 counts distinct runs in binary expansion.
A333489 ranks anti-runs, complement A348612.
A351014 counts distinct runs in standard compositions, firsts A351015.
A351291 ranks compositions without all distinct runs.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Join@@ ConstantArray@@@FactorInteger[#]],!UnsameQ@@Split[#]&]!={}&]

A351204 Number of integer partitions of n such that every permutation has all distinct runs.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 9, 11, 14, 18, 20, 25, 28, 34, 41, 47, 53, 64, 72, 84, 98, 113, 128, 148, 169, 194, 223, 255, 289, 333, 377, 428, 488, 554, 629, 715, 807, 913, 1033, 1166, 1313, 1483, 1667, 1875, 2111, 2369, 2655, 2977, 3332, 3729, 4170, 4657, 5195, 5797, 6459
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2022

Keywords

Comments

Partitions enumerated by this sequence include those in which all parts are either the same or distinct as well as partitions with an even number of parts all of which except one are the same. - Andrew Howroyd, Feb 15 2022

Examples

			The a(1) = 1 through a(8) = 11 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (2111)   (51)      (61)       (62)
                            (11111)  (222)     (421)      (71)
                                     (321)     (2221)     (431)
                                     (3111)    (4111)     (521)
                                     (111111)  (211111)   (2222)
                                               (1111111)  (5111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

The version for run-lengths instead of runs is A000005.
The version for normal multisets is 2^(n-1) - A283353(n-3).
The complement is counted by A351203, ranked by A351201.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A059966 counts Lyndon compositions, necklaces A008965, aperiodic A000740.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A238130 and A238279 count compositions by number of runs.
A297770 counts distinct runs in binary expansion.
A003242 counts anti-run compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],!UnsameQ@@Split[#]&]=={}&]],{n,0,15}]
  • PARI
    \\ here Q(n) is A000009.
    Q(n)={polcoef(prod(k=1, n, 1 + x^k + O(x*x^n)), n)}
    a(n)={Q(n) + if(n, numdiv(n) - 1) + sum(k=1, (n-1)\3, sum(j=3, (n-1)\k, j%2==1 && n-k*j<>k))} \\ Andrew Howroyd, Feb 15 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Feb 15 2022

A353836 Triangle read by rows where T(n,k) is the number of integer partitions of n with k distinct run-sums.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 0, 2, 1, 0, 0, 4, 1, 0, 0, 0, 2, 5, 0, 0, 0, 0, 5, 5, 1, 0, 0, 0, 0, 2, 12, 1, 0, 0, 0, 0, 0, 7, 12, 3, 0, 0, 0, 0, 0, 0, 3, 19, 8, 0, 0, 0, 0, 0, 0, 0, 5, 27, 9, 1, 0, 0, 0, 0, 0, 0, 0, 2, 33, 20, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, May 26 2022

Keywords

Comments

The run-sums of a sequence are the sums of its maximal consecutive constant subsequences (runs). For example, the run-sums of (2,2,1,1,1,3,2,2) are (4,3,3,4).

Examples

			Triangle begins:
  1
  0  1
  0  2  0
  0  2  1  0
  0  4  1  0  0
  0  2  5  0  0  0
  0  5  5  1  0  0  0
  0  2 12  1  0  0  0  0
  0  7 12  3  0  0  0  0  0
  0  3 19  8  0  0  0  0  0  0
  0  5 27  9  1  0  0  0  0  0  0
  0  2 33 20  1  0  0  0  0  0  0  0
  0 13 28 34  2  0  0  0  0  0  0  0  0
  0  2 48 46  5  0  0  0  0  0  0  0  0  0
  0  5 65 51 14  0  0  0  0  0  0  0  0  0  0
  0  4 57 99 15  1  0  0  0  0  0  0  0  0  0  0
For example, row n = 8 counts the following partitions:
  (8)         (53)       (431)
  (44)        (62)       (521)
  (422)       (71)       (3221)
  (2222)      (332)
  (41111)     (611)
  (221111)    (3311)
  (11111111)  (4211)
              (5111)
              (22211)
              (32111)
              (311111)
              (2111111)
		

Crossrefs

Row sums are A000041.
Counting distinct parts instead of run-sums gives A116608.
Column k = 1 is A304442, ranked by A353833 (nonprime A353834).
The rank statistic is A353835, weak A353861, for compositions A353849.
A275870 counts collapsible partitions, ranked by A300273.
A351014 counts distinct runs in standard compositions.
A353832 represents the operation of taking run-sums of a partition.
A353837 counts partitions with all distinct run-sums, ranked by A353838.
A353840-A353846 pertain to partition run-sum trajectory.
A353864 counts rucksack partitions, ranked by A353866.
A353865 counts perfect rucksack partitions, ranked by A353867.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Union[Total/@Split[#]]]==k&]],{n,0,15},{k,0,n}]

A350952 The smallest number whose binary expansion has exactly n distinct runs.

Original entry on oeis.org

0, 1, 2, 11, 38, 311, 2254, 36079, 549790, 17593311, 549687102, 35179974591, 2225029922430, 284803830071167, 36240869367020798, 9277662557957324543, 2368116566113212692990, 1212475681849964898811391, 619877748107024946567312382, 634754814061593545284927880191
Offset: 0

Views

Author

Gus Wiseman, Feb 14 2022

Keywords

Comments

Positions of first appearances in A297770 (with offset 0).
The binary expansion of terms for n > 0 starts with 1, then floor(n/2) 0's, then alternates runs of increasing numbers of 1's, and decreasing numbers of 0's; see Python code. Thus, for n even, terms have n*(n/2+1)/2 binary digits, and for n odd, ((n+1) + (n-1)*((n-1)/2+1))/2 binary digits. - Michael S. Branicky, Feb 14 2022

Examples

			The terms and their binary expansions begin:
       0:                   ()
       1:                    1
       2:                   10
      11:                 1011
      38:               100110
     311:            100110111
    2254:         100011001110
   36079:     1000110011101111
  549790: 10000110001110011110
For example, 311 has binary expansion 100110111 with 5 distinct runs: 1, 00, 11, 0, 111.
		

Crossrefs

Runs in binary expansion are counted by A005811, distinct A297770.
The version for run-lengths instead of runs is A165933, for A165413.
Subset of A175413 (binary expansion has distinct runs), for lengths A044813.
The version for standard compositions is A351015.
A000120 counts binary weight.
A011782 counts integer compositions.
A242882 counts compositions with distinct multiplicities.
A318928 gives runs-resistance of binary expansion.
A334028 counts distinct parts in standard compositions.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    q=Table[Length[Union[Split[If[n==0,{},IntegerDigits[n,2]]]]],{n,0,1000}];Table[Position[q,i][[1,1]]-1,{i,Union[q]}]
  • PARI
    a(n)={my(t=0); for(k=1, (n+1)\2, t=((t<Andrew Howroyd, Feb 15 2022
  • Python
    def a(n): # returns term by construction
        if n == 0: return 0
        q, r = divmod(n, 2)
        if r == 0:
            s = "".join("1"*i + "0"*(q-i+1) for i in range(1, q+1))
            assert len(s) == n*(n//2+1)//2
        else:
            s = "1" + "".join("0"*(q-i+2) + "1"*i for i in range(2, q+2))
            assert len(s) == ((n+1) + (n-1)*((n-1)//2+1))//2
        return int(s, 2)
    print([a(n) for n in range(20)]) # Michael S. Branicky, Feb 14 2022
    

Extensions

a(9)-a(19) from Michael S. Branicky, Feb 14 2022

A351203 Number of integer partitions of n of whose permutations do not all have distinct runs.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 6, 11, 16, 24, 36, 52, 73, 101, 135, 184, 244, 321, 418, 543, 694, 889, 1127, 1427, 1789, 2242, 2787, 3463, 4276, 5271, 6465, 7921, 9655, 11756, 14254, 17262, 20830, 25102, 30152, 36172, 43270, 51691, 61594, 73300, 87023, 103189, 122099, 144296, 170193, 200497
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2022

Keywords

Examples

			The a(4) = 1 through a(9) = 16 partitions:
  (211)  (221)  (411)    (322)    (332)      (441)
         (311)  (2211)   (331)    (422)      (522)
                (21111)  (511)    (611)      (711)
                         (3211)   (3221)     (3321)
                         (22111)  (3311)     (4221)
                         (31111)  (4211)     (4311)
                                  (22211)    (5211)
                                  (32111)    (22221)
                                  (41111)    (32211)
                                  (221111)   (33111)
                                  (2111111)  (42111)
                                             (51111)
                                             (222111)
                                             (321111)
                                             (2211111)
                                             (3111111)
For example, the partition x = (2,1,1,1,1) has the permutation (1,1,2,1,1), with runs (1,1), (2), (1,1), which are not all distinct, so x is counted under a(6).
		

Crossrefs

The version for run-lengths instead of runs is A144300.
The version for normal multisets is A283353.
The Heinz numbers of these partitions are A351201.
The complement is counted by A351204.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A059966 counts Lyndon compositions, necklaces A008965, aperiodic A000740.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A297770 counts distinct runs in binary expansion.
A003242 counts anti-run compositions, ranked by A333489.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],MemberQ[Permutations[#],_?(!UnsameQ@@Split[#]&)]&]],{n,0,15}]
  • Python
    from sympy.utilities.iterables import partitions
    from itertools import permutations, groupby
    from collections import Counter
    def A351203(n):
        c = 0
        for s, p in partitions(n,size=True):
            for q in permutations(Counter(p).elements(),s):
                if max(Counter(tuple(g) for k, g in groupby(q)).values(),default=0) > 1:
                    c += 1
                    break
        return c # Chai Wah Wu, Oct 16 2023

Formula

a(n) = A000041(n) - A351204(n). - Andrew Howroyd, Jan 27 2024

Extensions

a(26) onwards from Andrew Howroyd, Jan 27 2024

A353400 Number of integer compositions of n with all run-lengths > 2.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 1, 2, 4, 4, 5, 11, 11, 14, 27, 29, 37, 61, 72, 97, 147, 181, 246, 368, 470, 632, 914, 1198, 1611, 2286, 3018, 4079, 5709, 7619, 10329, 14333, 19258, 26142, 36069, 48688, 66114, 90800, 122913, 167020, 228735, 310167, 421708, 576499, 782803
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(7) = 1 through a(12) = 11 compositions:
  1111111   2222       333         22222        1112222       444
            11111111   111222      1111222      2222111       3333
                       222111      2221111      11111222      111333
                       111111111   1111111111   22211111      222222
                                                11111111111   333111
                                                              11112222
                                                              22221111
                                                              111111222
                                                              111222111
                                                              222111111
                                                              111111111111
		

Crossrefs

The = 2 version is A003242 aerated.
The <= 1 version is A003242 ranked by A333489.
The version for parts instead of run-lengths is A078012, both A353428.
The version for partitions is A100405.
The > 1 version is A114901, ranked by A353427.
The <= 2 version is A128695, matching A335464.
A008466 counts compositions with some part > 2.
A011782 counts compositions.
A106356 counts compositions by number of adjacent equal parts.
A274174 counts compositions with equal parts contiguous.
A329738 counts uniform compositions, partitions A047966.
A329739 counts compositions with all distinct run-lengths.

Programs

  • Maple
    b:= proc(n, h) option remember; `if`(n=0, 1, add(
         `if`(i<>h, add(b(n-i*j, i), j=3..n/i), 0), i=1..n/3))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, May 17 2022
  • Mathematica
    Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],!MemberQ[Length/@Split[#],1|2]&]],{n,0,15}]

Extensions

a(21)-a(49) from Alois P. Heinz, May 17 2022

A353401 Number of integer compositions of n with all prime run-lengths.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 4, 3, 6, 9, 10, 18, 27, 35, 54, 83, 107, 176, 242, 354, 515, 774, 1070, 1648, 2332, 3429, 4984, 7326, 10521, 15591, 22517, 32908, 48048, 70044, 101903, 149081, 216973, 316289, 461959, 672664, 981356, 1431256, 2086901, 3041577, 4439226, 6467735
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(0) = 1 through a(9) = 9 compositions (empty column indicated by dot, 0 is the empty composition):
  0   .  11   111   22   11111   33     11122     44       333
                                 222    22111     1133     11133
                                 1122   1111111   3311     33111
                                 2211             11222    111222
                                                  22211    222111
                                                  112211   1111122
                                                           1112211
                                                           1122111
                                                           2211111
		

Crossrefs

The case of runs equal to 2 is A003242 aerated.
The <= 1 version is A003242 ranked by A333489.
The version for parts instead of run-lengths is A023360, both A353429.
The version for partitions is A055923.
The > 1 version is A114901, ranked by A353427.
The <= 2 version is A128695, matching A335464.
The > 2 version is A353400, partitions A100405.
Words with all distinct run-lengths: A032020, A044813, A098859, A130091, A329739, A351013, A351017.
A005811 counts runs in binary expansion.
A008466 counts compositions with some part > 2.
A011782 counts compositions.
A167606 counts compositions with adjacent parts coprime.
A329738 counts uniform compositions, partitions A047966.

Programs

  • Maple
    b:= proc(n, h) option remember; `if`(n=0, 1, add(`if`(i<>h, add(
         `if`(isprime(j), b(n-i*j, i), 0), j=2..n/i), 0), i=1..n/2))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 18 2022
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MemberQ[Length/@Split[#],_?(!PrimeQ[#]&)]&]],{n,0,15}]

Extensions

a(21)-a(45) from Alois P. Heinz, May 18 2022
Previous Showing 21-30 of 41 results. Next