cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A369564 Powerful numbers whose prime factors are all of the form 4*k + 3.

Original entry on oeis.org

1, 9, 27, 49, 81, 121, 243, 343, 361, 441, 529, 729, 961, 1089, 1323, 1331, 1849, 2187, 2209, 2401, 3087, 3249, 3267, 3481, 3969, 4489, 4761, 5041, 5929, 6241, 6561, 6859, 6889, 8649, 9261, 9747, 9801, 10609, 11449, 11907, 11979, 12167, 14283, 14641, 16129, 16641
Offset: 1

Views

Author

Amiram Eldar, Jan 26 2024

Keywords

Comments

Closed under multiplication.

Crossrefs

Intersection of A001694 and A004614.
Similar sequence: A352492, A369563, A369565, A369566.

Programs

  • Mathematica
    q[n_] := n == 1 || AllTrue[FactorInteger[n], Mod[First[#], 4] == 3 && Last[#] > 1 &]; Select[Range[20000], q]
  • PARI
    is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 1]%4 != 3 || f[i, 2] == 1, return(0))); 1;}

Formula

Sum_{n>=1} 1/a(n) = Product_{primes p == 3 (mod 4)} (1 + 1/(p*(p-1))) = 3*A013661*A334426/(4*A175647) = 1.2161513254... .

A204617 Multiplicative with a(p^e) = p^(e-1)*H(p). H(2) = 1, H(p) = p - 1 if p == 1 (mod 4) and H(p) = p + 1 if p == 3 (mod 4).

Original entry on oeis.org

1, 1, 4, 2, 4, 4, 8, 4, 12, 4, 12, 8, 12, 8, 16, 8, 16, 12, 20, 8, 32, 12, 24, 16, 20, 12, 36, 16, 28, 16, 32, 16, 48, 16, 32, 24, 36, 20, 48, 16, 40, 32, 44, 24, 48, 24, 48, 32, 56, 20, 64, 24, 52, 36, 48, 32, 80, 28, 60, 32, 60, 32, 96, 32, 48, 48, 68, 32
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a := n->add(jacobi(-1,d)*mobius(d)*n/d, d in divisors(n)):
    seq(a(n), n = 1..60); # Peter Bala, Dec 26 2023
  • Mathematica
    ar[p_,s_] := Which[Mod[p,4]==1, p^(s-1)*(p-1), Mod[p,4]==3, p^(s-1)*(p+1), True,p^(s-1)]; arit[1] = 1; arit[n_] := Product[ar[FactorInteger[n][[i,1]], FactorInteger[n][[i,2]]], {i, Length[FactorInteger[n]]}]; Array[arit, 100]
  • PARI
    A204617(n) = { my(f=factor(n),p); prod(i=1, #f~, p=f[i, 1]; (p^(f[i, 2]-1)) * if(2==p,1,if(1==(p%4),p-1,p+1))); }; \\ Antti Karttunen, Nov 16 2021

Formula

a(n) = phi(n) if n is in A072437.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (3/8) * Product_{primes p == 1 (mod 4)} (1 - 1/p^2) * Product_{primes p == 3 (mod 4)} (1 + 1/p^2) = 3*A243381/(8*A175647) = 0.409404... . - Amiram Eldar, Dec 24 2022
a(n) = n*Product_{primes p, p | n} (1 - A034947(p)/p) = Sum_{d | n} A034947(d)* mobius(d)*n/d. Cf. A000010(n) = Sum_{d | n} mobius(d)*n/d. - Peter Bala, Dec 26 2023
a(n) = A079458(n)/A062570(n). - Ridouane Oudra, Jun 04 2024

A344123 Decimal expansion of Sum_{i > 0} 1/A001481(i)^2.

Original entry on oeis.org

1, 4, 2, 6, 5, 5, 6, 0, 6, 3, 5, 1, 2, 5, 9, 2, 8, 7, 8, 6, 9, 6, 8, 0, 9, 3, 1, 6, 1, 5, 5, 0, 8, 1, 6, 3, 6, 1, 2, 7, 6, 6, 9, 3, 6, 3, 6, 7, 7, 0, 3, 9, 0, 2, 8, 8, 7, 9, 9, 2, 2, 3, 0, 4, 4, 1, 2, 9, 6, 0, 4, 5, 2, 8, 6, 1, 5, 1, 9, 0, 1, 9, 1, 4, 6, 7
Offset: 1

Views

Author

A.H.M. Smeets, May 09 2021

Keywords

Comments

This constant can be considered as an equivalent of zeta(2) (= Pi^2/6 = A013661), where Euler's zeta(2) is over all positive integers, with prime elements in A000040, while this constant is over all positive integers that can be written as the sum of two squares (A001481) with prime elements given in A055025.
Close to the value of e^(3/2)/Pi.

Examples

			1.4265560635125928786968093161550816361276693636770...
		

Crossrefs

Formula

Equals Sum_{i > 0} 1/A001481(i)^2.
Equals Product_{i > 0} 1/(1-A055025(i)^-2).
Equals 1/(1-prime(1)^(-2)) * Product_{i>1 and prime(i) == 1 (mod 4)} 1/(1-prime(i)^(-2)) * Product_{i>1 and prime(i) == 3 (mod 4)} 1/(1-prime(i)^(-4)), where prime(n) = A000040(n).
Equals (4/3)/(A243379*A334448).
Equals zeta_{2,0} (2) * zeta_{4,1} (2) * zeta_{4,3} (4), where zeta_{4,1} (2) = A175647 and zeta_{2,0} (s) = 2^s/(2^s - 1).

A115076 Number of 2 X 2 symmetric matrices over Z(n) having determinant 1.

Original entry on oeis.org

1, 4, 6, 12, 30, 24, 42, 48, 54, 120, 110, 72, 182, 168, 180, 192, 306, 216, 342, 360, 252, 440, 506, 288, 750, 728, 486, 504, 870, 720, 930, 768, 660, 1224, 1260, 648, 1406, 1368, 1092, 1440, 1722, 1008, 1806, 1320, 1620, 2024, 2162, 1152, 2058, 3000
Offset: 1

Views

Author

T. D. Noe, Jan 12 2006

Keywords

Comments

a(1)=1 because the matrix of all zeros has determinant 0, but 0=1 (mod 1).

Crossrefs

Cf. A000056 (order of the group SL(2, Z_n)), A175647, A243380.

Programs

  • Mathematica
    Table[cnt=0; Do[m={{a, b}, {b, c}}; If[Det[m, Modulus->n]==1, cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}]; cnt, {n, 50}]
    f[p_, e_] := If[Mod[p, 4] == 1, (p+1)*p^(2*e-1), (p-1)*p^(2*e-1)]; f[2, 1] = 4; f[2, e_] := 3*2^(2*e-2); a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Aug 28 2023 *)
  • PARI
    a(n)={my(v=vector(n)); for(i=0, n-1, for(j=0, n-1, v[i*j%n+1]++)); sum(i=0, n-1, v[(i^2+1)%n+1])} \\ Andrew Howroyd, Jul 04 2018
    
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); p^(2*e-1)*if(p==2, if(e==1, 2, 3/2), if(p%4==1, p+1, p-1)))} \\ Andrew Howroyd, Jul 04 2018

Formula

Multiplicative with a(2^1) = 4, a(2^e) = 3*2^(2*e-2) for e > 1, a(p^e) = (p+1)*p^(2*e-1) for p mod 4 == 1, a(p^e) = (p-1)*p^(2*e-1) for p mod 4 == 3. - Andrew Howroyd, Jul 04 2018
Sum_{k=1..n} a(k) ~ c * n^3, where c = (5/(2*Pi^2)) * A175647 * A243380 = 0.282098596071... . - Amiram Eldar, Aug 28 2023

A327122 Expansion of Sum_{k>=1} sigma(k) * x^k / (1 + x^(2*k)), where sigma = A000203.

Original entry on oeis.org

1, 3, 3, 7, 7, 9, 7, 15, 10, 21, 11, 21, 15, 21, 21, 31, 19, 30, 19, 49, 21, 33, 23, 45, 38, 45, 30, 49, 31, 63, 31, 63, 33, 57, 49, 70, 39, 57, 45, 105, 43, 63, 43, 77, 70, 69, 47, 93, 50, 114, 57, 105, 55, 90, 77, 105, 57, 93, 59, 147, 63, 93, 70, 127, 105
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 14 2019

Keywords

Comments

Inverse Moebius transform of A050469.

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[Sum[DivisorSigma[1, k] x^k/(1 + x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    A050469[n_] := DivisorSum[n, # &, MemberQ[{1}, Mod[n/#, 4]] &] - DivisorSum[n, # &, MemberQ[{3}, Mod[n/#, 4]] &]; a[n_] := DivisorSum[n, A050469[#] &]; Table[a[n], {n, 1, 65}]
    f[p_, e_] := If[Mod[p, 4] == 1, (p^(e+2)-(e+2)*p+e+1)/(p-1)^2, (2*p^(e+2) + ((-1)^e-1)*p - ((-1)^e+1))/(2*(p^2-1))]; f[2, e_] := 2^(e+1)-1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 70] (* Amiram Eldar, Aug 28 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(p == 2, 2^(e+1)-1, if(p%4 == 1, (p^(e+2)-(e+2)*p+e+1)/(p-1)^2, (2*p^(e+2) + ((-1)^e-1)*p - ((-1)^e+1))/(2*(p^2-1))))); } \\ Amiram Eldar, Aug 28 2023

Formula

a(n) = Sum_{d|n} A050469(d).
From Amiram Eldar, Aug 28 2023: (Start)
Multiplicative with a(2^e) = 2^(e+1)-1, and if p is an odd prime a(p^e) = (p^(e+2)-(e+2)*p+e+1)/(p-1)^2 if p == 1 (mod 4) and (2*p^(e+2) + ((-1)^e-1)*p - ((-1)^e+1))/(2*(p^2-1)) otherwise.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/12 * (A175647/A243381) = 0.753351504961... . (End)

A340857 Decimal expansion of constant K5 = 29*log(2+sqrt(5))*(Product_{primes p == 1 (mod 5)} (1-4*(2*p-1)/(p*(p+1)^2)))/(15*Pi^2).

Original entry on oeis.org

2, 6, 2, 6, 5, 2, 1, 8, 8, 7, 2, 0, 5, 3, 6, 7, 6, 6, 6, 7, 5, 9, 6, 2, 0, 1, 1, 4, 7, 2, 0, 8, 8, 3, 4, 6, 5, 3, 0, 2, 0, 4, 3, 9, 3, 0, 6, 4, 7, 4, 4, 7, 3, 9, 1, 0, 6, 8, 2, 5, 5, 1, 0, 5, 8, 7, 0, 9, 2, 6, 6, 8, 3, 8, 6, 9, 0, 2, 2, 7, 4, 1, 7, 9, 4, 1, 9, 3, 8, 3, 6, 5, 5, 2, 3, 5, 0, 0, 2, 0, 1, 0, 0, 8, 9, 1
Offset: 0

Views

Author

Artur Jasinski, Jan 24 2021

Keywords

Comments

Finch and Sebah, 2009, p. 7 (see link) call this constant K_5. K_5 is related to the Mertens constant C(5,1) (see A340839). For more references see the links in A340711. Finch and Sebah give the following definition:
Consider the asymptotic enumeration of m-th order primitive Dirichlet characters mod n. Let b_m(n) denote the count of such characters. There exists a constant 0 < K_m < oo such that Sum_{n <= N} b_m(n) ∼ K_m*N*log(N)^(d(m) - 2) as N -> oo, where d(m) is the number of divisors of m.

Examples

			0.262652188720536766675962011472088346530204393064744739106825510587...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 121; f[p_] := (1 - 4*(2*p-1)/(p*(p+1)^2));
    coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]]*S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*P[5, 1, m]; sump = sump + difp; PrintTemporary[m]; m++];
    RealDigits[Chop[N[29*Log[2+Sqrt[5]]/(15*Pi^2) * Exp[sump], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 25 2021, took over 50 minutes *)

Formula

Equals (29/25)*(Product_{primes p} (1-1/p)^2*(1+gcd(p-1,5)/(p-1))) [Finch and Sebah, 2009, p. 10].
Previous Showing 21-26 of 26 results.