cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A132240 Primes congruent to {1, 29} mod 30.

Original entry on oeis.org

29, 31, 59, 61, 89, 149, 151, 179, 181, 211, 239, 241, 269, 271, 331, 359, 389, 419, 421, 449, 479, 509, 541, 569, 571, 599, 601, 631, 659, 661, 691, 719, 751, 809, 811, 839, 929, 991, 1019, 1021, 1049, 1051, 1109, 1171, 1201, 1229, 1231
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2007

Keywords

Comments

For every prime p here, the cyclotomic polynomial Phi(15p,x) is flat.
Primes in A175887. [Reinhard Zumkeller, Jan 07 2012]

Crossrefs

Programs

  • Haskell
    a132240 n = a132240_list !! (n-1)
    a132240_list = [x | x <- a175887_list, a010051 x == 1]
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [ p: p in PrimesUpTo(1300) | p mod 30 in {1, 29} ]; // Vincenzo Librandi, Aug 14 2012
  • Mathematica
    Select[Prime[Range[1000]],MemberQ[{1,29},Mod[#,30]]&] (* Vincenzo Librandi, Aug 14 2012 *)
    Select[Flatten[#+{1,29}&/@(30Range[0,50])],PrimeQ] (* Harvey P. Dale, Sep 08 2021 *)

A257645 a(n) = 15*n + 14.

Original entry on oeis.org

14, 29, 44, 59, 74, 89, 104, 119, 134, 149, 164, 179, 194, 209, 224, 239, 254, 269, 284, 299, 314, 329, 344, 359, 374, 389, 404, 419, 434, 449, 464, 479, 494, 509, 524, 539, 554, 569, 584, 599, 614, 629, 644, 659, 674, 689, 704, 719, 734, 749, 764, 779
Offset: 0

Views

Author

Arkadiusz Wesolowski, Nov 05 2015

Keywords

Comments

A123159(a(n)) <= 4.
This is not a subsequence of A047725 (for example, 239 is missing in A047725). - Bruno Berselli, Nov 06 2015
Equivalently, intersection of A016897 and A016789. - Bruno Berselli, Jan 24 2018

Crossrefs

Programs

  • Magma
    [15*n+14: n in [0..51]];
    
  • Maple
    seq(15*n+14, n=0..51);
  • Mathematica
    15 Range[50] - 1
  • PARI
    for(n=0, 51, print1(15*n+14, ", "));

Formula

G.f.: (14 + x)/(1 - x)^2.
a(n) = A008597(n+1) - 1. - Omar E. Pol, Nov 05 2015
a(n) = A016897(3n+2) = A175887(2n+2) = A204542(4n+4). - Bruno Berselli, Nov 06 2015
E.g.f.: (15*x + 14)*exp(x). - G. C. Greubel, Apr 23 2018
a(n) = 2*a(n-1)-a(n-2). - Wesley Ivan Hurt, Dec 27 2023
Previous Showing 11-12 of 12 results.