cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A373672 Length of the n-th maximal antirun of non-prime-powers.

Original entry on oeis.org

5, 3, 1, 6, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 1, 1, 3, 2, 2, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2024

Keywords

Comments

An antirun of a sequence (in this case A361102 or A024619 with 1) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of non-prime-powers begin:
   1   6  10  12  14
  15  18  20
  21
  22  24  26  28  30  33
  34
  35
  36  38
  39
  40  42  44
  45
  46  48  50
		

Crossrefs

For prime antiruns we have A027833.
For nonsquarefree runs we have A053797, firsts A373199.
For non-prime-powers runs we have A110969, firsts A373669, sorted A373670.
For squarefree runs we have A120992.
For prime-power runs we have A174965.
For prime runs we have A175632.
For composite runs we have A176246, firsts A073051, sorted A373400.
For squarefree antiruns we have A373127, firsts A373128.
For composite antiruns we have A373403.
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
For antiruns of non-prime-powers:
- length A373672 (this sequence), firsts (3,7,2,25,1,4)
- min A373575
- max A255346
A000961 lists all powers of primes. A246655 lists just prime-powers.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A356068 counts non-prime-powers up to n.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    Length/@Split[Select[Range[100],!PrimePowerQ[#]&],#1+1!=#2&]//Most

Formula

Partial sums are A356068(A255346(n)).

A073051 Least k such that Sum_{i=1..k} (prime(i) + prime(i+2) - 2*prime(i+1)) = 2n + 1.

Original entry on oeis.org

1, 3, 8, 23, 33, 45, 29, 281, 98, 153, 188, 262, 366, 428, 589, 737, 216, 1182, 3301, 2190, 1878, 1830, 7969, 3076, 3426, 2224, 3792, 8027, 4611, 4521, 3643, 8687, 14861, 12541, 15782, 3384, 34201, 19025, 17005, 44772, 23282, 38589, 14356
Offset: 1

Views

Author

Robert G. Wilson v, Aug 15 2002

Keywords

Comments

Also, least k such that 2n = A001223(k-1) = prime(k+1) - prime(k), where prime(k) = A001223(n). - Alexander Adamchuk, Jul 30 2006
Also the least number k>0 such that the k-th maximal run of composite numbers has length 2n-1. For example, the 8th such run (24,25,26,27,28) is the first of length 2(3)-1, so a(3) = 8. Also positions of first appearances in A176246 (A046933 without first term). - Gus Wiseman, Jun 12 2024

Examples

			a(3) = 8 because 1+0+2-2+2-2+2+2 = 5 and (5+1)/2 = 3.
		

Crossrefs

Position of first appearance of 2n+1 in A176246.
For nonsquarefree runs we have a bisection of A373199.
A000040 lists the primes, first differences A001223.
A002808 lists the composite numbers, differences A073783, sums A053767.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.

Programs

  • Mathematica
    NextPrim[n_Integer] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; a = Table[0, {50}]; s = 0; k = 1; p = 0; q = 2; r = 3; While[k < 10^6, p = q; q = r; r = NextPrim[q]; s = s + p + r - 2q; If[s < 101 && a[[(s + 1)/2]] == 0, a[[(s + 1)/2]] = k]; k++ ]; a
  • PARI
    a001223(n) = prime(n+1) - prime(n);
    a(n) = {my(k = 1); while(2*n != A001223(k+1), k++); k;} \\ Michel Marcus, Nov 20 2016

Formula

a(n) = A038664(n) - 1. - Filip Zaludek, Nov 19 2016

A373575 Numbers k such that k and k-1 both have at least two distinct prime factors. First element of the n-th maximal antirun of non-prime-powers.

Original entry on oeis.org

1, 15, 21, 22, 34, 35, 36, 39, 40, 45, 46, 51, 52, 55, 56, 57, 58, 63, 66, 69, 70, 75, 76, 77, 78, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 100, 105, 106, 111, 112, 115, 116, 117, 118, 119, 120, 123, 124, 130, 133, 134, 135, 136, 141, 142, 143, 144, 145
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2024

Keywords

Comments

The last element of the same antirun is given by A255346.
An antirun of a sequence (in this case A361102) is an interval of positions at which consecutive terms differ by more than one.

Examples

			The maximal antiruns of non-prime-powers begin:
   1   6  10  12  14
  15  18  20
  21
  22  24  26  28  30  33
  34
  35
  36  38
  39
  40  42  44
  45
  46  48  50
		

Crossrefs

Runs of prime-powers:
- length A174965
- min A373673
- max A373674
- sum A373675
Runs of non-prime-powers:
- length A110969
- min A373676
- max A373677
- sum A373678
Antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
Antiruns of non-prime-powers:
- length A373672
- min A373575 (this sequence)
- max A255346
- sum A373679
A000961 lists all powers of primes. A246655 lists just prime-powers.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A356068 counts non-prime-powers up to n.
A361102 lists all non-prime-powers (A024619 if not including 1).
Various run-lengths: A053797, A120992, A175632, A176246.
Various antirun-lengths: A027833, A373127, A373403, A373409.

Programs

  • Mathematica
    Select[Range[100],!PrimePowerQ[#]&&!PrimePowerQ[#-1]&]
    Join[{1},SequencePosition[Table[If[PrimeNu[n]>1,1,0],{n,150}],{1,1}][[;;,2]]] (* Harvey P. Dale, Feb 23 2025 *)

A373673 First element of each maximal run of powers of primes (including 1).

Original entry on oeis.org

1, 7, 11, 13, 16, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2024

Keywords

Comments

A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The last element of the same run is A373674.
Consists of all powers of primes k such that k-1 is not a power of primes.

Examples

			The maximal runs of powers of primes begin:
   1   2   3   4   5
   7   8   9
  11
  13
  16  17
  19
  23
  25
  27
  29
  31  32
  37
  41
  43
  47
  49
		

Crossrefs

For composite antiruns we have A005381, max A068780, length A373403.
For prime antiruns we have A006512, max A001359, length A027833.
For composite runs we have A008864, max A006093, length A176246.
For prime runs we have A025584, max A067774, length A251092 or A175632.
For runs of prime-powers:
- length A174965
- min A373673 (this sequence)
- max A373674
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676
- max A373677
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes (A246655 if not including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    pripow[n_]:=n==1||PrimePowerQ[n];
    Min/@Split[Select[Range[100],pripow],#1+1==#2&]//Most

A373674 Last element of each maximal run of powers of primes (including 1).

Original entry on oeis.org

5, 9, 11, 13, 17, 19, 23, 25, 27, 29, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Gus Wiseman, Jun 16 2024

Keywords

Comments

A run of a sequence (in this case A000961) is an interval of positions at which consecutive terms differ by one.
The first element of the same run is A373673.
Consists of all powers of primes k such that k+1 is not a power of primes.

Examples

			The maximal runs of powers of primes begin:
   1   2   3   4   5
   7   8   9
  11
  13
  16  17
  19
  23
  25
  27
  29
  31  32
  37
  41
  43
  47
  49
		

Crossrefs

For prime antiruns we have A001359, min A006512, length A027833.
For composite runs we have A006093, min A008864, length A176246.
For prime runs we have A067774, min A025584, length A251092 or A175632.
For squarefree runs we have A373415, min A072284, length A120992.
For nonsquarefree runs we have min A053806, length A053797.
For runs of prime-powers:
- length A174965
- min A373673
- max A373674 (this sequence)
- sum A373675
For runs of non-prime-powers:
- length A110969 (firsts A373669, sorted A373670)
- min A373676
- max A373677
- sum A373678
For antiruns of prime-powers:
- length A373671
- min A120430
- max A006549
- sum A373576
For antiruns of non-prime-powers:
- length A373672
- min A373575
- max A255346
- sum A373679
A000961 lists all powers of primes (A246655 if not including 1).
A025528 counts prime-powers up to n.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists all non-prime-powers (A024619 if not including 1).

Programs

  • Mathematica
    pripow[n_]:=n==1||PrimePowerQ[n];
    Max/@Split[Select[Range[nn],pripow],#1+1==#2&]//Most

A375702 Length of the n-th maximal run of adjacent (increasing by one at a time) non-perfect-powers.

Original entry on oeis.org

2, 3, 6, 8, 1, 4, 3, 12, 14, 16, 18, 20, 3, 2, 15, 24, 26, 19, 8, 17, 12, 32, 34, 18, 17, 38, 40, 42, 27, 16, 46, 48, 50, 52, 54, 56, 58, 60, 38, 23, 64, 66, 68, 70, 34, 37, 74, 76, 78, 80, 46, 35, 84, 86, 88, 22, 67, 70, 9, 11, 94, 96, 98, 100, 102, 39, 64
Offset: 1

Views

Author

Gus Wiseman, Aug 27 2024

Keywords

Comments

Non-perfect-powers A007916 are numbers with no proper integer roots.

Examples

			The list of all non-perfect-powers, split into runs, begins:
   2   3
   5   6   7
  10  11  12  13  14  15
  17  18  19  20  21  22  23  24
  26
  28  29  30  31
  33  34  35
  37  38  39  40  41  42  43  44  45  46  47  48
Row n has length a(n), first A375703, last A375704, sum A375705.
		

Crossrefs

For nonsquarefree numbers we have A053797, anti-runs A373409.
For squarefree numbers we have A120992, anti-runs A373127.
For nonprime numbers we have A176246, anti-runs A373403.
For prime-powers we have A373675, anti-runs A373576.
For non-prime-powers we have A373678, anti-runs A373679.
The anti-run version is A375736, sum A375737.
For runs of non-perfect-powers (A007916):
- length: A375702 (this).
- first: A375703
- last: A375704
- sum: A375705
A001597 lists perfect-powers, differences A053289.
A007916 lists non-perfect-powers, differences A375706.
A046933 counts composite numbers between primes.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Length/@Split[Select[Range[100],radQ],#1+1==#2&]//Most

Formula

For n > 2 we have a(n) = A053289(n+1) - 1.

A373821 Run-lengths of run-lengths of first differences of odd primes.

Original entry on oeis.org

1, 11, 1, 19, 1, 1, 1, 5, 1, 6, 1, 16, 1, 27, 1, 3, 1, 1, 1, 6, 1, 9, 1, 29, 1, 2, 1, 18, 1, 1, 1, 5, 1, 3, 1, 17, 1, 19, 1, 30, 1, 17, 1, 46, 1, 17, 1, 27, 1, 30, 1, 5, 1, 36, 1, 41, 1, 10, 1, 31, 1, 44, 1, 4, 1, 14, 1, 6, 1, 2, 1, 32, 1, 13, 1, 17, 1, 5
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Run-lengths of A333254.
The first term other than 1 at an odd positions is at a(101) = 2.
Also run-lengths (differing by 0) of run-lengths (differing by 0) of run-lengths (differing by 1) of composite numbers.

Examples

			The odd primes are:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with first differences:
2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, ...
with run-lengths:
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, ...
with run-lengths a(n).
		

Crossrefs

Run-lengths of run-lengths of A046933(n) = A001223(n) - 1.
Run-lengths of A333254.
A000040 lists the primes.
A001223 gives differences of consecutive primes.
A027833 gives antirun lengths of odd primes (partial sums A029707).
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths of odd primes.
For prime runs: A001359, A006512, A025584, A067774, A373406.
For composite runs: A005381, A008864, A054265, A176246, A251092, A373403.

Programs

  • Mathematica
    Length/@Split[Length /@ Split[Differences[Select[Range[3,1000],PrimeQ]]]//Most]//Most

A375736 Length of the n-th maximal anti-run of adjacent (increasing by more than one at a time) non-perfect-powers.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers with no proper integer roots.
An anti-run of a sequence is an interval of positions at which consecutive terms differ by more than one.

Examples

			The initial anti-runs are the following, whose lengths are a(n):
  (2)
  (3,5)
  (6)
  (7,10)
  (11)
  (12)
  (13)
  (14)
  (15,17)
  (18)
  (19)
  (20)
  (21)
  (22)
  (23)
  (24,26,28)
		

Crossrefs

For squarefree numbers we have A373127, runs A120992.
For nonprime numbers we have A373403, runs A176246.
For nonsquarefree numbers we have A373409, runs A053797.
For prime-powers we have A373576, runs A373675.
For non-prime-powers (exclusive) we have A373672, runs A110969.
For runs instead of anti-runs we have A375702.
For anti-runs of non-perfect-powers:
- length: A375736 (this)
- first: A375738
- last: A375739
- sum: A375737
For runs of non-perfect-powers:
- length: A375702
- first: A375703
- last: A375704
- sum: A375705
A001597 lists perfect-powers, differences A053289.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Length/@Split[Select[Range[100],radQ],#1+1!=#2&]//Most

A375713 Indices of consecutive non-prime-powers (A361102) differing by 1. Numbers k such that the k-th and (k+1)-th non-prime-powers differ by just one.

Original entry on oeis.org

5, 8, 9, 15, 16, 17, 19, 20, 23, 24, 27, 28, 30, 31, 32, 33, 36, 38, 40, 41, 44, 45, 46, 47, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 64, 67, 68, 71, 72, 74, 75, 76, 77, 78, 79, 81, 82, 85, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2024

Keywords

Examples

			The initial non-prime-powers are 1, 6, 10, 12, 14, 15, 18, 20, 21, which first increase by one after the fifth and eighth terms.
		

Crossrefs

The inclusive version is a(n) - 1.
For prime-powers inclusive (A000961) we have A375734, differences A373671.
For nonprime numbers (A002808) we have A375926, differences A373403.
For prime-powers exclusive (A246655) we have A375734(n+1) + 1.
First differences are A373672.
Positions of 1's in A375708.
For non-perfect-powers we have A375740.
Prime-powers inclusive:
- terms: A000961
- differences: A057820
Non-prime-powers inclusive:
- terms: A361102
- differences: A375708
A000040 lists all of the primes, differences A001223.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],!PrimePowerQ[#]&]],1]

Formula

A361102(k+1) - A361102(k) = 1.

A373669 Least k such that the k-th maximal run of non-prime-powers has length n. Position of first appearance of n in A110969, and the sequence ends if there is none.

Original entry on oeis.org

1, 5, 7, 12, 18, 190, 28, 109, 40, 28195574, 53
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2024

Keywords

Comments

A run of a sequence (in this case A361102) is an interval of positions at which consecutive terms differ by one.
Are there only 9 terms?
From David A. Corneth, Jun 14 2024: (Start)
No. a(10) exists.
Between the prime 144115188075855859 and 144115188075855872 = 2^57 there are 12 non-prime-powers so a(12) exists. (End)

Examples

			The maximal runs of non-prime-powers begin:
   1
   6
  10
  12
  14  15
  18
  20  21  22
  24
  26
  28
  30
  33  34  35  36
  38  39  40
  42
  44  45  46
  48
  50  51  52
  54  55  56  57  58
  60
		

Crossrefs

For composite runs we have A073051, sorted A373400, firsts of A176246.
For squarefree runs we have firsts of A120992.
For prime-powers runs we have firsts of A174965.
For prime runs we have firsts of A251092 or A175632.
For squarefree antiruns we have A373128, firsts of A373127.
For nonsquarefree runs we have A373199, firsts of A053797.
The sorted version is A373670.
For antiruns we have firsts of A373672.
For runs of non-prime-powers:
- length A110969
- min A373676
- max A373677
- sum A373678
A000961 lists the powers of primes (including 1).
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A361102 lists the non-prime-powers, without 1 A024619.

Programs

  • Mathematica
    q=Length/@Split[Select[Range[10000],!PrimePowerQ[#]&],#1+1==#2&]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[y,Range[#1]]&];
    Table[Position[q,k][[1,1]],{k,spna[q]}]
Previous Showing 11-20 of 36 results. Next