cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A337603 Number of ordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

0, 0, 0, 1, 3, 6, 9, 9, 18, 15, 24, 21, 42, 24, 51, 30, 54, 42, 93, 45, 102, 54, 99, 69, 162, 66, 150, 87, 168, 96, 264, 93, 228, 120, 246, 126, 336, 132, 315, 168, 342, 162, 486, 165, 420, 216, 411, 213, 618, 207, 558, 258, 540, 258, 783, 264, 654, 324, 660
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Examples

			The a(3) = 1 through a(8) = 18 triples:
  (1,1,1)  (1,1,2)  (1,1,3)  (1,1,4)  (1,1,5)  (1,1,6)
           (1,2,1)  (1,2,2)  (1,2,3)  (1,3,3)  (1,2,5)
           (2,1,1)  (1,3,1)  (1,3,2)  (1,5,1)  (1,3,4)
                    (2,1,2)  (1,4,1)  (2,2,3)  (1,4,3)
                    (2,2,1)  (2,1,3)  (2,3,2)  (1,5,2)
                    (3,1,1)  (2,3,1)  (3,1,3)  (1,6,1)
                             (3,1,2)  (3,2,2)  (2,1,5)
                             (3,2,1)  (3,3,1)  (2,3,3)
                             (4,1,1)  (5,1,1)  (2,5,1)
                                               (3,1,4)
                                               (3,2,3)
                                               (3,3,2)
                                               (3,4,1)
                                               (4,1,3)
                                               (4,3,1)
                                               (5,1,2)
                                               (5,2,1)
                                               (6,1,1)
		

Crossrefs

A014311 intersected with A333228 ranks these compositions.
A220377*6 is the strict case.
A337461 is the strict case except for any number of 1's.
A337601 is the unordered version.
A337602 considers all singletons to be coprime.
A337665 counts these compositions of any length, ranked by A333228 with complement A335238.
A000217(n - 2) counts 3-part compositions.
A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions.
A007318 and A097805 count compositions by length.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A304711 ranks partitions whose distinct parts are pairwise coprime.
A305713 counts strict pairwise coprime partitions.
A327516 counts pairwise coprime partitions, with strict case A305713.
A333227 ranks pairwise coprime compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{3}],CoprimeQ@@Union[#]&]],{n,0,100}]

A337667 Number of compositions of n where any two parts have a common divisor > 1.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 5, 1, 8, 4, 17, 1, 38, 1, 65, 19, 128, 1, 284, 1, 518, 67, 1025, 1, 2168, 16, 4097, 256, 8198, 1, 16907, 7, 32768, 1027, 65537, 79, 133088, 19, 262145, 4099, 524408, 25, 1056731, 51, 2097158, 16636, 4194317, 79, 8421248, 196, 16777712
Offset: 0

Views

Author

Gus Wiseman, Oct 05 2020

Keywords

Comments

First differs from A178472 at a(31) = 7, a(31) = 1.

Examples

			The a(2) = 1 through a(10) = 17 compositions (A = 10):
   2   3   4    5   6     7   8      9     A
           22       24        26     36    28
                    33        44     63    46
                    42        62     333   55
                    222       224          64
                              242          82
                              422          226
                              2222         244
                                           262
                                           424
                                           442
                                           622
                                           2224
                                           2242
                                           2422
                                           4222
                                           22222
		

Crossrefs

A101268 = 1 + A337462 is the pairwise coprime version.
A328673 = A200976 + 1 is the unordered version.
A337604 counts these compositions of length 3.
A337666 ranks these compositions.
A337694 gives Heinz numbers of the unordered version.
A337983 is the strict case.
A051185 counts intersecting set-systems, with spanning case A305843.
A318717 is the unordered strict case.
A319786 is the version for factorizations, with strict case A318749.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    stabQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],stabQ[#,CoprimeQ]&]],{n,0,15}]

A332004 Number of compositions (ordered partitions) of n into distinct and relatively prime parts.

Original entry on oeis.org

1, 1, 0, 2, 2, 4, 8, 12, 16, 24, 52, 64, 88, 132, 180, 344, 416, 616, 816, 1176, 1496, 2736, 3232, 4756, 6176, 8756, 11172, 15576, 24120, 30460, 41456, 55740, 74440, 97976, 130192, 168408, 256464, 315972, 429888, 558192, 749920, 958264, 1274928, 1621272, 2120288, 3020256
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2020

Keywords

Comments

Moebius transform of A032020.
Ranking these compositions using standard compositions (A066099) gives the intersection of A233564 (strict) with A291166 (relatively prime). - Gus Wiseman, Oct 18 2020

Examples

			a(6) = 8 because we have [5, 1], [3, 2, 1], [3, 1, 2], [2, 3, 1], [2, 1, 3], [1, 5], [1, 3, 2] and [1, 2, 3].
From _Gus Wiseman_, Oct 18 2020: (Start)
The a(1) = 1 through a(8) = 16 compositions (empty column indicated by dot):
  (1)  .  (1,2)  (1,3)  (1,4)  (1,5)    (1,6)    (1,7)
          (2,1)  (3,1)  (2,3)  (5,1)    (2,5)    (3,5)
                        (3,2)  (1,2,3)  (3,4)    (5,3)
                        (4,1)  (1,3,2)  (4,3)    (7,1)
                               (2,1,3)  (5,2)    (1,2,5)
                               (2,3,1)  (6,1)    (1,3,4)
                               (3,1,2)  (1,2,4)  (1,4,3)
                               (3,2,1)  (1,4,2)  (1,5,2)
                                        (2,1,4)  (2,1,5)
                                        (2,4,1)  (2,5,1)
                                        (4,1,2)  (3,1,4)
                                        (4,2,1)  (3,4,1)
                                                 (4,1,3)
                                                 (4,3,1)
                                                 (5,1,2)
                                                 (5,2,1)
(End)
		

Crossrefs

A000740 is the non-strict version.
A078374 is the unordered version (non-strict: A000837).
A101271*6 counts these compositions of length 3 (non-strict: A000741).
A337561/A337562 is the pairwise coprime instead of relatively prime version (non-strict: A337462/A101268).
A289509 gives the Heinz numbers of relatively prime partitions.
A333227/A335235 ranks pairwise coprime compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&GCD@@#<=1&]],{n,0,15}] (* Gus Wiseman, Oct 18 2020 *)

A337562 Number of pairwise coprime strict compositions of n, where a singleton is always considered coprime.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 9, 7, 17, 13, 23, 41, 41, 67, 49, 75, 75, 155, 211, 229, 243, 241, 287, 395, 807, 537, 841, 655, 1147, 1619, 2037, 2551, 2213, 2007, 2663, 4579, 4171, 7123, 4843, 6013, 6215, 11639, 13561, 16489, 14739, 15445, 16529, 25007, 41003, 32803
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Examples

			The a(1) = 1 through a(9) = 12 compositions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)    (8)      (9)
            (1,2)  (1,3)  (1,4)  (1,5)    (1,6)  (1,7)    (1,8)
            (2,1)  (3,1)  (2,3)  (5,1)    (2,5)  (3,5)    (2,7)
                          (3,2)  (1,2,3)  (3,4)  (5,3)    (4,5)
                          (4,1)  (1,3,2)  (4,3)  (7,1)    (5,4)
                                 (2,1,3)  (5,2)  (1,2,5)  (7,2)
                                 (2,3,1)  (6,1)  (1,3,4)  (8,1)
                                 (3,1,2)         (1,4,3)  (1,3,5)
                                 (3,2,1)         (1,5,2)  (1,5,3)
                                                 (2,1,5)  (3,1,5)
                                                 (2,5,1)  (3,5,1)
                                                 (3,1,4)  (5,1,3)
                                                 (3,4,1)  (5,3,1)
                                                 (4,1,3)
                                                 (4,3,1)
                                                 (5,1,2)
                                                 (5,2,1)
		

Crossrefs

A007360 is the unordered version, with non-strict version A051424.
A101268 is the not necessarily strict version.
A220377*6 counts these compositions of length 3.
A337561 does not consider a singleton to be coprime unless it is (1), with non-strict version A337462.
A337664 looks only at distinct parts.
A000740 counts relatively prime compositions, with strict case A332004.
A072706 counts unimodal strict compositions.
A178472 counts compositions with a common factor.
A327516 counts pairwise coprime partitions, with strict case A305713.
A328673 counts pairwise non-coprime partitions.
A333228 ranks compositions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&(Length[#]<=1||CoprimeQ@@#)&]],{n,0,10}]

Formula

a(n > 1) = A337561(n) + 1 for n > 1.

A152061 Counts of unique periodic binary strings of length n.

Original entry on oeis.org

0, 0, 2, 2, 4, 2, 10, 2, 16, 8, 34, 2, 76, 2, 130, 38, 256, 2, 568, 2, 1036, 134, 2050, 2, 4336, 32, 8194, 512, 16396, 2, 33814, 2, 65536, 2054, 131074, 158, 266176, 2, 524290, 8198, 1048816, 2, 2113462, 2, 4194316, 33272, 8388610, 2, 16842496, 128, 33555424
Offset: 0

Views

Author

Jin S. Choi, Sep 24 2011

Keywords

Comments

a(p) = 2 for p prime.

Examples

			a(3) = 2 = |{ 000, 111 }|, a(4) = 4 = |{ 0000, 1111, 0101, 1010 }|.
		

Crossrefs

Row sums of A050870.
A050871 is bisection (even part). - R. J. Mathar, Sep 24 2011

Programs

  • Maple
    with(numtheory):
    a:= n-> `if`(n=0, 0, 2^n -add(mobius(n/d)*2^d, d=divisors(n))):
    seq(a(n), n=0..100);  # Alois P. Heinz, Sep 26 2011
  • Mathematica
    a[0] = 0; a[n_] := 2^n - Sum[MoebiusMu[n/d]*2^d, {d, Divisors[n]}];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 04 2019 *)
  • Python
    from sympy import mobius, divisors
    def A152061(n): return -sum(mobius(n//d)<Chai Wah Wu, Sep 21 2024

Formula

a(n) = 2^n - A001037(n) * n for n>0, a(0) = 0.
a(n) = 2^n - A027375(n) for n>0, a(0) = 0.
a(n) = 2^n - Sum_{d|n} mu(n/d) 2^d for n>0, a(0) = 0.
a(n) = 2^n - A143324(n,2).
a(n) = 2 * A178472(n) for n > 0. - Alois P. Heinz, Jul 04 2019

A329140 Numbers whose prime signature is a periodic word.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154
Offset: 1

Views

Author

Gus Wiseman, Nov 09 2019

Keywords

Comments

First differs from A182853 in having 2100 = 2^2 * 3^1 * 5^2 * 7^1.
A number's prime signature (A124010) is the sequence of positive exponents in its prime factorization.
A sequence is aperiodic if its cyclic rotations are all different.

Examples

			The sequence of terms together with their prime signatures begins:
   6: (1,1)
  10: (1,1)
  14: (1,1)
  15: (1,1)
  21: (1,1)
  22: (1,1)
  26: (1,1)
  30: (1,1,1)
  33: (1,1)
  34: (1,1)
  35: (1,1)
  36: (2,2)
  38: (1,1)
  39: (1,1)
  42: (1,1,1)
  46: (1,1)
  51: (1,1)
  55: (1,1)
  57: (1,1)
  58: (1,1)
		

Crossrefs

Complement of A329139.
Periodic compositions are A178472.
Periodic binary words are A152061.
Numbers whose binary expansion is periodic are A121016.
Numbers whose prime signature is a Lyndon word are A329131.
Numbers whose prime signature is a necklace are A329138.

Programs

  • Mathematica
    aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ];
    Select[Range[100],!aperQ[Last/@FactorInteger[#]]&]

A337450 Number of relatively prime compositions of n with no 1's.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 7, 5, 17, 17, 54, 51, 143, 168, 358, 482, 986, 1313, 2583, 3663, 6698, 9921, 17710, 26489, 46352, 70928, 121137, 188220, 317810, 497322, 832039, 1313501, 2177282, 3459041, 5702808, 9094377, 14930351, 23895672, 39084070, 62721578
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(5) = 2 through a(10) = 17 compositions (empty column indicated by dot):
  (2,3)  .  (2,5)    (3,5)    (2,7)      (3,7)
  (3,2)     (3,4)    (5,3)    (4,5)      (7,3)
            (4,3)    (2,3,3)  (5,4)      (2,3,5)
            (5,2)    (3,2,3)  (7,2)      (2,5,3)
            (2,2,3)  (3,3,2)  (2,2,5)    (3,2,5)
            (2,3,2)           (2,3,4)    (3,3,4)
            (3,2,2)           (2,4,3)    (3,4,3)
                              (2,5,2)    (3,5,2)
                              (3,2,4)    (4,3,3)
                              (3,4,2)    (5,2,3)
                              (4,2,3)    (5,3,2)
                              (4,3,2)    (2,2,3,3)
                              (5,2,2)    (2,3,2,3)
                              (2,2,2,3)  (2,3,3,2)
                              (2,2,3,2)  (3,2,2,3)
                              (2,3,2,2)  (3,2,3,2)
                              (3,2,2,2)  (3,3,2,2)
		

Crossrefs

A000740 is the version allowing 1's.
2*A055684(n) is the case of length 2.
A302697 ranks the unordered case.
A302698 is the unordered version.
A337451 is the strict version.
A337452 is the unordered strict version.
A000837 counts relatively prime partitions.
A002865 counts partitions with no 1's.
A101268 counts singleton or pairwise coprime compositions.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A337462 counts pairwise coprime compositions.

Programs

  • Maple
    b:= proc(n, g) option remember; `if`(n=0,
         `if`(g=1, 1, 0), add(b(n-j, igcd(g, j)), j=2..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..42);
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MemberQ[#,1]&&GCD@@#==1&]],{n,0,15}]

A337451 Number of relatively prime strict compositions of n with no 1's.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 4, 2, 10, 8, 20, 14, 34, 52, 72, 90, 146, 172, 244, 390, 502, 680, 956, 1218, 1686, 2104, 3436, 4078, 5786, 7200, 10108, 12626, 17346, 20876, 32836, 38686, 53674, 67144, 91528, 113426, 152810, 189124, 245884, 343350, 428494, 552548, 719156
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2020

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.

Examples

			The a(5) = 2 through a(10) = 8 compositions (empty column indicated by dot):
  (2,3)  .  (2,5)  (3,5)  (2,7)    (3,7)
  (3,2)     (3,4)  (5,3)  (4,5)    (7,3)
            (4,3)         (5,4)    (2,3,5)
            (5,2)         (7,2)    (2,5,3)
                          (2,3,4)  (3,2,5)
                          (2,4,3)  (3,5,2)
                          (3,2,4)  (5,2,3)
                          (3,4,2)  (5,3,2)
                          (4,2,3)
                          (4,3,2)
		

Crossrefs

A032022 does not require relative primality.
A302698 is the unordered non-strict version.
A332004 is the version allowing 1's.
A337450 is the non-strict version.
A337452 is the unordered version.
A000837 counts relatively prime partitions.
A032020 counts strict compositions.
A078374 counts strict relatively prime partitions.
A002865 counts partitions with no 1's.
A212804 counts compositions with no 1's.
A291166 appears to rank relatively prime compositions.
A337462 counts pairwise coprime compositions.
A337561 counts strict pairwise coprime compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,15}]

A302291 a(n) is the period of the binary expansion of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 3, 1, 4, 4, 2, 4, 4, 4, 4, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 6, 6, 6, 6, 3, 6, 6, 6, 6, 6, 2, 6, 6, 3, 6, 6, 6, 6, 6, 6, 6, 6, 3, 6, 6, 6, 6, 6, 6, 6, 6, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

Rémy Sigrist, Apr 04 2018

Keywords

Comments

Zero is assumed to be represented as 0; otherwise, leading zeros are ignored.
See A302295 for the variant where leading zeros are allowed.

Examples

			The first terms, alongside the binary expansion of n with periodic part in parentheses, are:
  n  a(n)    bin(n)
  -- ----    ------
   0    1    (0)
   1    1    (1)
   2    2    (10)
   3    1    (1)(1)
   4    3    (100)
   5    3    (101)
   6    3    (110)
   7    1    (1)(1)(1)
   8    4    (1000)
   9    4    (1001)
  10    2    (10)(10)
  11    4    (1011)
  12    4    (1100)
  13    4    (1101)
  14    4    (1110)
  15    1    (1)(1)(1)(1)
  16    5    (10000)
  17    5    (10001)
  18    5    (10010)
  19    5    (10011)
  20    5    (10100)
		

Crossrefs

Aperiodic compositions are counted by A000740.
Aperiodic binary words are counted by A027375.
The orderless period of prime indices is A052409.
Numbers whose binary expansion is periodic are A121016.
Periodic compositions are counted by A178472.
Numbers whose prime signature is aperiodic are A329139.
Compositions by number of distinct rotations are A333941.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Reversed necklaces are A333943.

Programs

  • Mathematica
    Table[If[n==0,1,Length[Union[Array[RotateRight[IntegerDigits[n,2],#]&,IntegerLength[n,2]]]]],{n,0,50}] (* Gus Wiseman, Apr 19 2020 *)
  • PARI
    a(n) = my (l=max(1, #binary(n))); fordiv (l, w, if (#Set(digits(n, 2^w))<=1, return (w)))

Formula

a(n) = A070939(n) / A138904(n).
a(2^n) = n + 1 for any n >= 0.
a(2^n - 1) = 1 for any n >= 0.
a(A020330(n)) = a(n) for any n > 0.

A329134 Numbers whose differences of prime indices are a periodic word.

Original entry on oeis.org

8, 16, 27, 30, 32, 64, 81, 105, 110, 125, 128, 180, 210, 238, 243, 256, 273, 343, 385, 450, 506, 512, 625, 627, 729, 806, 935, 1001, 1024, 1080, 1100, 1131, 1155, 1331, 1394, 1495, 1575, 1729, 1786, 1870, 1887, 2048, 2187, 2197, 2310, 2401, 2431, 2451, 2635
Offset: 1

Views

Author

Gus Wiseman, Nov 09 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A sequence is periodic if its cyclic rotations are not all different.

Examples

			The sequence of terms together with their differences of prime indices begins:
     8: (0,0)
    16: (0,0,0)
    27: (0,0)
    30: (1,1)
    32: (0,0,0,0)
    64: (0,0,0,0,0)
    81: (0,0,0)
   105: (1,1)
   110: (2,2)
   125: (0,0)
   128: (0,0,0,0,0,0)
   180: (0,1,0,1)
   210: (1,1,1)
   238: (3,3)
   243: (0,0,0,0)
   256: (0,0,0,0,0,0,0)
   273: (2,2)
   343: (0,0)
   385: (1,1)
   450: (1,0,1,0)
		

Crossrefs

Complement of A329135.
These are the Heinz numbers of the partitions counted by A329144.
Periodic binary words are A152061.
Periodic compositions are A178472.
Numbers whose binary expansion is periodic are A121016.
Numbers whose prime signature is periodic are A329140.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    aperQ[q_]:=Array[RotateRight[q,#1]&,Length[q],1,UnsameQ];
    Select[Range[10000],!aperQ[Differences[primeMS[#]]]&]
Previous Showing 11-20 of 40 results. Next