cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A365542 Number of subsets of {1..n-1} that can be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 1, 2, 6, 10, 28, 48, 116, 224, 480, 920, 2000, 3840, 7984, 15936, 32320, 63968, 130176, 258304, 521920, 1041664, 2089472, 4171392, 8377856, 16726528, 33509632, 67004416, 134129664, 268111360, 536705024, 1072961536, 2146941952, 4293509120, 8588414976
Offset: 1

Views

Author

Gus Wiseman, Sep 09 2023

Keywords

Examples

			The a(2) = 1 through a(5) = 10 partitions:
  {1}  {1}    {1}      {1}
       {1,2}  {2}      {1,2}
              {1,2}    {1,3}
              {1,3}    {1,4}
              {2,3}    {2,3}
              {1,2,3}  {1,2,3}
                       {1,2,4}
                       {1,3,4}
                       {2,3,4}
                       {1,2,3,4}
		

Crossrefs

The case of positive coefficients is A365042, complement A365045.
For subsets of {1..n} instead of {1..n-1} we have A365073.
The binary complement is A365315.
The complement is counted by A365380.
A124506 and A326083 appear to count combination-free subsets.
A179822 and A326080 count sum-closed subsets.
A364350 counts combination-free strict partitions.
A364914 and A365046 count combination-full subsets.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n-1]],combs[n,#]!={}&]],{n,5}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A365542(n):
        a = {tuple(sorted(set(p))) for p in partitions(n)}
        return sum(1 for m in range(1,n) for b in combinations(range(1,n),m) if any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 12 2023

Extensions

More terms from Alois P. Heinz, Sep 13 2023

A384391 Number of subsets of {1..n} containing n and some element that is a sum of distinct non-elements.

Original entry on oeis.org

0, 0, 1, 3, 9, 20, 48, 102, 219, 454, 945, 1920, 3925, 7921, 16008
Offset: 0

Views

Author

Gus Wiseman, Jun 06 2025

Keywords

Examples

			The a(0) = 0 through a(6) = 20 subsets:
  .  .  .  {3}  {4}    {5}      {6}
                {2,4}  {1,5}    {1,6}
                {3,4}  {2,5}    {2,6}
                       {3,5}    {3,6}
                       {4,5}    {4,6}
                       {1,4,5}  {5,6}
                       {2,3,5}  {1,3,6}
                       {2,4,5}  {1,5,6}
                       {3,4,5}  {2,3,6}
                                {2,4,6}
                                {2,5,6}
                                {3,4,6}
                                {3,5,6}
                                {4,5,6}
                                {1,3,5,6}
                                {1,4,5,6}
                                {2,3,4,6}
                                {2,3,5,6}
                                {2,4,5,6}
                                {3,4,5,6}
		

Crossrefs

The complement with n is counted by A179822, first differences of A326080.
Partial sums are A384350.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A179009 counts maximally refined strict partitions, ranks A383707.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.
A383706 counts ways to choose disjoint strict partitions of prime indices, non-disjoint A357982, non-strict A299200.

Programs

  • Mathematica
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@nonsets[#]]!={}&]],{n,0,10}]

A384392 Number of integer partitions of n whose distinct parts are maximally refined.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 7, 10, 14, 20, 24, 33, 41, 55, 70, 88, 110, 140, 171, 214, 265, 324, 397, 485, 588, 711, 861, 1032, 1241, 1486, 1773
Offset: 0

Views

Author

Gus Wiseman, Jun 07 2025

Keywords

Comments

Given any partition, the following are equivalent:
1) The distinct parts are maximally refined.
2) Every strict partition of a part contains a part. In other words, if y is the set of parts and z is any strict partition of any element of y, then z must contain at least one element from y.
3) No part is a sum of distinct non-parts.

Examples

			The a(1) = 1 through a(8) = 14 partitions:
  (1)  (2)   (21)   (22)    (32)     (222)     (322)      (332)
       (11)  (111)  (31)    (41)     (321)     (331)      (431)
                    (211)   (221)    (411)     (421)      (521)
                    (1111)  (311)    (2211)    (2221)     (2222)
                            (2111)   (3111)    (3211)     (3221)
                            (11111)  (21111)   (4111)     (3311)
                                     (111111)  (22111)    (4211)
                                               (31111)    (22211)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The strict case is A179009, ranks A383707.
For subsets instead of partitions we have A326080, complement A384350.
These partitions are ranked by A384320, complement A384321.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
    Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@nonsets[#]]=={}&]],{n,0,15}]

A179817 Maximally refined partitions into distinct parts (of any natural number) with n parts.

Original entry on oeis.org

1, 2, 4, 8, 14, 27, 48, 86, 151, 269, 460, 808, 1386, 2372, 4048, 6890, 11661, 19719, 33167, 55705, 93288, 155954, 260040, 432895, 719252, 1192989, 1975724, 3267513, 5396171, 8900534, 14663096
Offset: 0

Views

Author

Moshe Shmuel Newman, Jan 10 2011

Keywords

Comments

For the definition, see sequence A179009. This sequence counts the same objects using a different statistic, the number of parts rather than their sum.

Examples

			For n=2, the partitions being counted are:
  2+1, 3+1, 4+1, 3+2.
For n=3, the partitions are:
  3+2+1, 4+2+1, 5+2+1, 6+2+1,
  4+3+1, 5+3+1, 6+4+1, 4+3+2.
		

Crossrefs

Programs

  • PARI
    ok(k,b)={for(i=1, (k-1)\2, if(bittest(b,i) && bittest(b,k-i), return(0))); 1}
    a(n)={((k,w,b)->if(w==n, 1, if(k<=2*w+1, self()(k+1, w, bitor(b,1<Andrew Howroyd, Apr 14 2021

Extensions

a(0)=1 prepended and a(19)-a(30) from Andrew Howroyd, Apr 14 2021
Previous Showing 11-14 of 14 results.