cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A334499 For 0 <= R <= 255, let s(R,n) = eventual period of a single cell in a Rule R cellular automaton operating in a cyclic universe of width n; a(n) = max_R s(R,n).

Original entry on oeis.org

2, 2, 6, 8, 30, 18, 126, 40, 504, 430, 979, 102, 819, 2198, 6820, 6016, 78812, 7812, 183920, 142580, 352884, 122870, 1630792, 185040, 2777040, 312156, 81688176, 304913, 463347935, 5921860, 1211061438, 26636800, 3315517623, 40012662, 24752893585, 135322524, 40583131393, 535150200, 132932362849, 3936823600
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Examples

			For R = 45, the sequence {s(R,1)..s(R,10)} is 2,2,1,2,30,18,126,2,504,430 (see A334508), and s(45,10) = 430 is the greatest value of any s(R,10), and a(10) = 430.
		

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020.

Crossrefs

Formula

a(n) <= A357950(n). Equality holds for all n <= 35, except n = 12, 13, 23, 24, 25, 26, 28, 34. - Pontus von Brömssen, Nov 09 2022

Extensions

More terms from Bert Dobbelaere, May 09 2020

A334496 Eventual period of a single cell in rule 30 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 1, 8, 5, 1, 4, 40, 72, 15, 154, 102, 260, 1428, 1455, 6016, 10846, 2844, 247, 3420, 597, 3256, 38249, 185040, 588425, 312156, 240300, 249165, 833808, 374265, 2841150, 842528, 1049268, 5656002, 18480630, 2844, 49276415, 9329228, 961272, 19211080, 51151354, 109603410
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Programs

  • Mathematica
    a[rule_, n_] := -Subtract @@ Flatten[Map[     Position[#, #[[-1]]] &,
         NestWhileList[CellularAutomaton[rule],
          Prepend[Table[0, {n - 1}], 1], Unequal, All], {0}]]
    a[30, #] & /@ Range[10]
    (* Bradley Klee, Apr 26 2020 *)

Extensions

More terms from Bert Dobbelaere, May 09 2020

A334515 Eventual period of a single cell in rule 75 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

2, 2, 3, 2, 30, 18, 126, 2, 504, 430, 979, 18, 443, 2198, 6820, 976, 78812, 7812, 158080, 142580, 248493, 122870, 1630792, 18, 2777040, 4511, 81688176, 868, 463347935, 5921860, 1211061438, 26636800, 598772163, 40012662, 145710075, 135322524, 40583131393, 535150200, 132932362849, 3936823600
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Extensions

a(11)-a(14) from Jinyuan Wang, May 09 2020
More terms from Bert Dobbelaere, May 09 2020

A085587 Eventual period of a single cell in rule 90 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 7, 1, 7, 6, 31, 4, 63, 14, 15, 1, 15, 14, 511, 12, 63, 62, 2047, 8, 1023, 126, 511, 28, 16383, 30, 31, 1, 31, 30, 4095, 28, 87381, 1022, 4095, 24, 1023, 126, 127, 124, 4095, 4094, 8388607, 16, 2097151, 2046, 255, 252, 67108863, 1022, 1048575, 56, 511, 32766, 536870911, 60
Offset: 1

Views

Author

N. J. A. Sloane, Jul 03 2003

Keywords

Crossrefs

Extensions

More terms from Sean A. Irvine, Jun 10 2018
Definition edited by N. J. A. Sloane, May 05 2020

A161903 Convert n into a sequence of binary digits, apply one step of the rule 110 cellular automaton, and interpret the results as a binary integer.

Original entry on oeis.org

0, 3, 6, 7, 12, 15, 14, 13, 24, 27, 30, 31, 28, 31, 26, 25, 48, 51, 54, 55, 60, 63, 62, 61, 56, 59, 62, 63, 52, 55, 50, 49, 96, 99, 102, 103, 108, 111, 110, 109, 120, 123, 126, 127, 124, 127, 122, 121, 112, 115, 118, 119, 124, 127, 126, 125, 104, 107, 110, 111, 100, 103, 98, 97, 192, 195, 198, 199, 204, 207, 206, 205, 216, 219, 222, 223, 220, 223, 218, 217, 240, 243, 246, 247, 252, 255, 254, 253, 248, 251, 254, 255, 244, 247, 242, 241, 224, 227, 230, 231, 236
Offset: 0

Views

Author

Ben Branman, Jan 30 2011

Keywords

Comments

a(a(a(...1))) (n times) gives A006978(n)

Examples

			For n=19, the evolution after one step is
0, 1, 0, 0, 1, 1  (n=19)
1, 1, 0, 1, 1, 1  (a(n)=55)
So a(n)=55.
		

Crossrefs

Programs

  • Mathematica
    a[n_] :=
    FromDigits[
      Drop[Part[CellularAutomaton[110, {IntegerDigits[n, 2], 0}], 1], -1],
       2];Table[a[n],{n,0,100}]

Formula

a(n) = A057889(A269174(A057889(n))). - Antti Karttunen, Jun 02 2018

A204371 Maximum period of cellular automaton rule 110 in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 1, 2, 1, 9, 14, 16, 7, 25, 110, 18, 351, 91, 295, 32, 578, 81, 285, 240, 630, 462, 1058, 552, 300, 351, 567, 2156, 1044, 1770, 2759, 2368, 1100, 969, 3920, 1584
Offset: 1

Views

Author

Ben Branman, Jan 14 2012

Keywords

Comments

a(n) >= A180001(n), and this sequence agrees with A180001 up to n=11.

Examples

			The 12 cell pattern
000100110111
001101111101
011111000111
110001001101
010011011111
110111110001
011100010011
110100110111
011101111100
110111000100
111101001101
000111011111
001101110001
011111010011
110001110111
010011011100
110111110100
111100011101
000100110111
Has period 18, which is the maximum possible, so a(12)=18
		

Crossrefs

Programs

  • Mathematica
    f[list_] := -Subtract @@ Flatten[Map[Position[#, #[[-1]]] &, NestWhileList[CellularAutomaton[110], list, Unequal, All], {0}]]; ma[n_] := Max[Table[f[IntegerDigits[i, 2, n]], {i, 0, 2^n - 1}]]; Table[ma[n], {n, 1, 10}]

Extensions

a(19)-a(36) from Lars Blomberg, Dec 24 2015

A334506 Eventual period of a single cell in rule 161 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 1, 6, 6, 4, 4, 14, 14, 1, 1, 14, 14, 12, 12, 62, 62, 8, 8, 126, 126, 28, 28, 30, 30, 1, 1, 30, 30, 28, 28, 1022, 1022, 24, 24, 126, 126, 124, 124, 4094, 4094, 16, 16, 2046, 2046, 252, 252, 1022, 1022, 56, 56, 32766, 32766, 60, 60, 62, 62, 1, 1, 62, 62, 60, 60, 8190
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Extensions

a(11)-a(40) from Jinyuan Wang, May 09 2020
a(41)-a(50) from Vaclav Kotesovec, May 10 2020
a(51) and beyond from Angelo Rosso, Jul 26 2022

A334508 Eventual period of a single cell in rule 45 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

2, 2, 1, 2, 30, 18, 126, 2, 504, 430, 979, 18, 676, 2198, 2340, 976, 78812, 3756, 183920, 142580, 352884, 122870, 1358104, 56544, 2777040, 4511, 44568603, 304913, 463347935, 5921860, 855372646, 26636800, 3315517623, 2359940, 24752893585, 135322524, 8049125817, 535150200, 132932362849
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(10).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Extensions

a(11)-a(16) from Jinyuan Wang, May 09 2020
More terms from Bert Dobbelaere, May 11 2020

A334497 Maximum value of eventual period for any starting configuration for a rule 30 cellular automaton in a cyclic universe of width n.

Original entry on oeis.org

1, 1, 1, 8, 5, 1, 63, 40, 171, 15, 154, 102, 832, 1428, 1455, 6016, 10846, 2844, 3705, 6150, 2793, 3553, 38249, 185040, 588425, 312156, 240300, 249165, 1466066, 374265, 2841150, 2002272, 2038476, 5656002, 18480630, 2237472
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Bradley Klee computed a(1)-a(7).

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020.

Crossrefs

Programs

  • Mathematica
    a[rule_, init_] := -Subtract @@ Flatten[Map[
         Position[#, #[[-1]]] &, NestWhileList[CellularAutomaton[rule],
          init, Unequal, All], {0}]]
    tri[n_] := a[30, #] & /@ Tuples[{0, 1}, n];
    tri /@ Range[7]
    Max /@ %
    (* Bradley Klee, Apr 26 2020 *)

Formula

a(n) <= A357950(n). Equality holds for n = 4, 8, 16. - Pontus von Brömssen, Oct 22 2022

Extensions

a(8)-a(12) from Jinyuan Wang, May 14 2020
a(13)-a(22) from Pontus von Brömssen, Oct 22 2022
a(23)-a(36) from Paolo Xausa, Jun 29 2023, using data from Gage, Laub and McGarry (2005), p. 7, Table 2.

A334500 For 0 <= R <= 255, let s(R,n) = eventual period of a single cell in a Rule R cellular automaton operating in a cyclic universe of width n; a(n) is the nearest integer to max_R s(R,n)/n (rounded down in case of ties).

Original entry on oeis.org

2, 1, 2, 2, 6, 3, 18, 5, 56, 43, 89, 8, 63, 157, 455, 376, 4636, 434, 9680, 7129, 16804, 5585, 70904, 7710, 111082, 12006, 3025488, 10890, 15977515, 197395, 39066498, 832400, 100470231, 1176843, 707225531, 3758959, 1096841389, 14082900, 3408522124, 98420590
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2020

Keywords

Comments

Nearest integer to A334499(n)/n.

Examples

			For R = 45, the sequence {s(R,1)..s(R,10)} is 2,2,1,2,30,18,126,2,504,430 (see A334508), and s(45,10) = 430 is the greatest value of any s(R,10), so a(10) = 430/10 = 430.
		

References

  • Bradley Klee, Posting to Math Fun Mailing List, Apr 26 2020

Crossrefs

Extensions

a(11)-a(40) (based on data in A334499) from Pontus von Brömssen, Oct 15 2022
Showing 1-10 of 23 results. Next