cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A013656 a(n) = n*(9*n-2).

Original entry on oeis.org

0, 7, 32, 75, 136, 215, 312, 427, 560, 711, 880, 1067, 1272, 1495, 1736, 1995, 2272, 2567, 2880, 3211, 3560, 3927, 4312, 4715, 5136, 5575, 6032, 6507, 7000, 7511, 8040, 8587, 9152, 9735, 10336, 10955, 11592, 12247, 12920, 13611, 14320, 15047, 15792, 16555
Offset: 0

Views

Author

Keywords

Comments

For n>0, numbers such that sqrt(a(n)) has the continued fraction {k;[1,1,1,2k]}, where the part in [] is repeated and k is of the form 3m+2 (A016789). - Bruno Berselli, May 30 2013
For n >= 1, the continued fraction expansion of sqrt(4*a(n)) is [6n-1; {3, 3n-1, 3, 12n-2}]. - Magus K. Chu, Sep 18 2022

Crossrefs

Programs

Formula

a(n+1) = A144454(9*n+7) = A061039(27*n+21). - Paul Curtz, Nov 05 2008
a(n) = a(n-1) + 18*n - 11 with n>0, a(0)=0. - Vincenzo Librandi, Nov 22 2010
a(0)=0, a(1)=7, a(2)=32, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jul 07 2012
From G. C. Greubel, Mar 11 2022: (Start)
G.f.: x*(7 - 11*x)/(1-x)^3.
E.g.f.: x*(7 + 9*x)*exp(x). (End)
Sum_{n>=1} 1/a(n) = -(psi(7/9)+gamma)/2 = (A354640-A001620)/2 = 0.22000753... - R. J. Mathar, Apr 22 2024

A147296 a(n) = n*(9*n+2).

Original entry on oeis.org

0, 11, 40, 87, 152, 235, 336, 455, 592, 747, 920, 1111, 1320, 1547, 1792, 2055, 2336, 2635, 2952, 3287, 3640, 4011, 4400, 4807, 5232, 5675, 6136, 6615, 7112, 7627, 8160, 8711, 9280, 9867, 10472, 11095, 11736, 12395, 13072, 13767, 14480, 15211, 15960
Offset: 0

Views

Author

Paul Curtz, Nov 05 2008

Keywords

Comments

For n >= 1, the continued fraction expansion of sqrt(4*a(n)) is [6n; {1, 1, 1, 3n-1, 1, 1, 1, 12n}]. - Magus K. Chu, Sep 17 2022

Crossrefs

Equals first 9-fold decimation of A144454.

Programs

  • Mathematica
    Table[n(9n+2),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,11,40},50] (* Harvey P. Dale, Dec 19 2014 *)
  • PARI
    A147296(n) = n*(9*n + 2) \\ M. F. Hasler, Mar 01 2009

Formula

a(n) = n*(9*n + 2), as conjectured by V. Librandi. - M. F. Hasler, Mar 01 2009
G.f.: x*(11+7*x)/(1-x)^3. - Jaume Oliver Lafont, Aug 30 2009
a(n) = floor((3*n + 1/3)^2). - Reinhard Zumkeller, Apr 14 2010
From Elmo R. Oliveira, Dec 15 2024: (Start)
E.g.f.: exp(x)*x*(11 + 9*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

More terms from M. F. Hasler, Mar 01 2009

A195026 a(n) = 7*n*(2*n + 1).

Original entry on oeis.org

0, 21, 70, 147, 252, 385, 546, 735, 952, 1197, 1470, 1771, 2100, 2457, 2842, 3255, 3696, 4165, 4662, 5187, 5740, 6321, 6930, 7567, 8232, 8925, 9646, 10395, 11172, 11977, 12810, 13671, 14560, 15477, 16422, 17395, 18396, 19425, 20482, 21567, 22680, 23821, 24990
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 21, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. Semi-diagonal opposite to A195320 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].
Sum of the numbers from 6*n to 8*n. - Wesley Ivan Hurt, Dec 23 2015

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 7*n.
a(n) = 7*A014105(n). - Bruno Berselli, Oct 13 2011
From Colin Barker, Apr 09 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 7*x*(3+x)/(1-x)^3. (End)
a(n) = Sum_{i=6*n..8*n} i. - Wesley Ivan Hurt, Dec 23 2015
E.g.f.: 7*exp(x)*x*(3 + 2*x). - Elmo R. Oliveira, Dec 29 2024

A195030 a(n) = (n-2)*(14*n-39) for n > 2, otherwise a(n) = n.

Original entry on oeis.org

0, 1, 2, 3, 34, 93, 180, 295, 438, 609, 808, 1035, 1290, 1573, 1884, 2223, 2590, 2985, 3408, 3859, 4338, 4845, 5380, 5943, 6534, 7153, 7800, 8475, 9178, 9909, 10668, 11455, 12270, 13113, 13984, 14883, 15810, 16765, 17748, 18759, 19798, 20865, 21960, 23083
Offset: 0

Views

Author

Omar E. Pol, Oct 18 2011

Keywords

Comments

Union of [1, 2] and A195021.
Sequence found by reading the line from 0, in the direction 0, 1,..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the one of the semi-axis of the square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].

Crossrefs

Programs

Formula

G.f.: x*(1-x+30*x^3-2*x^4)/(1-x)^3. - Bruno Berselli, Oct 18 2011

Extensions

Both sequence (based on A195021) and definition suggested by Bruno Berselli, Oct 18 2011

A195027 a(n) = 2*n*(7*n + 5).

Original entry on oeis.org

0, 24, 76, 156, 264, 400, 564, 756, 976, 1224, 1500, 1804, 2136, 2496, 2884, 3300, 3744, 4216, 4716, 5244, 5800, 6384, 6996, 7636, 8304, 9000, 9724, 10476, 11256, 12064, 12900, 13764, 14656, 15576, 16524, 17500, 18504, 19536, 20596, 21684, 22800, 23944, 25116, 26316
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 24, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. Semi-axis opposite to A195023 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 10*n.
a(n) = 4*A179986(n). - Bruno Berselli, Oct 13 2011
G.f.: 4*x*(6+x)/(1-x)^3. - Colin Barker, Jan 09 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=24, a(2)=76. - Harvey P. Dale, Jul 24 2012
E.g.f.: 2*exp(x)*x*(12 + 7*x). - Elmo R. Oliveira, Dec 30 2024

A195028 a(n) = n*(14*n + 13).

Original entry on oeis.org

0, 27, 82, 165, 276, 415, 582, 777, 1000, 1251, 1530, 1837, 2172, 2535, 2926, 3345, 3792, 4267, 4770, 5301, 5860, 6447, 7062, 7705, 8376, 9075, 9802, 10557, 11340, 12151, 12990, 13857, 14752, 15675, 16626, 17605, 18612, 19647, 20710, 21801, 22920, 24067, 25242
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 27, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. Numbers opposite to the semi-diagonal A195024 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 13*n.
G.f.: x*(27+x)/(1-x)^3. - Colin Barker, Jan 09 2012
From Elmo R. Oliveira, Dec 30 2024: (Start)
E.g.f.: exp(x)*x*(27 + 14*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Name suggested by Bruno Berselli, Oct 13 2011

A195029 a(n) = n*(14*n + 13) + 3.

Original entry on oeis.org

3, 30, 85, 168, 279, 418, 585, 780, 1003, 1254, 1533, 1840, 2175, 2538, 2929, 3348, 3795, 4270, 4773, 5304, 5863, 6450, 7065, 7708, 8379, 9078, 9805, 10560, 11343, 12154, 12993, 13860, 14755, 15678, 16629, 17608, 18615, 19650, 20713, 21804, 22923, 24070, 25245
Offset: 0

Views

Author

Omar E. Pol, Sep 07 2011

Keywords

Comments

Sequence found by reading the line from 3, in the direction 3, 30, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the semi-diagonal parallel to A195024 and also parallel to A195028 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].
56*a(n) + 1 is a perfect square. - Bruno Berselli, Feb 14 2017

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 13*n + 3 = A195028(n) + 3 = (2*n + 1)*(7*n + 3).
From Colin Barker, Apr 09 2012: (Start)
G.f.: (3 + 21*x + 4*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Elmo R. Oliveira, Dec 29 2024: (Start)
E.g.f.: exp(x)*(3 + 27*x + 14*x^2).
a(n) = A005408(n)*A017017(n) = A022264(2*n+1). (End)

Extensions

Edited by Bruno Berselli, Feb 14 2017
Previous Showing 11-17 of 17 results.