cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A358583 Number of rooted trees with n nodes, at least half of which are leaves.

Original entry on oeis.org

1, 1, 1, 3, 4, 13, 20, 67, 110, 383, 663, 2346, 4217, 15118, 27979, 101092, 191440, 695474, 1341974, 4893067, 9589567, 35055011, 69612556, 254923825, 511987473, 1877232869, 3807503552, 13972144807, 28585315026, 104955228432, 216381073935, 794739865822
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2022

Keywords

Examples

			The a(1) = 1 through a(6) = 13 trees:
  o  (o)  (oo)  (ooo)   (oooo)   (ooooo)
                ((oo))  ((ooo))  ((oooo))
                (o(o))  (o(oo))  (o(ooo))
                        (oo(o))  (oo(oo))
                                 (ooo(o))
                                 (((ooo)))
                                 ((o)(oo))
                                 ((o(oo)))
                                 ((oo(o)))
                                 (o((oo)))
                                 (o(o)(o))
                                 (o(o(o)))
                                 (oo((o)))
		

Crossrefs

For equality we have A185650 aerated, ranked by A358578.
The strict case is A358581.
The opposite version is A358584, strict A358582.
The ordered version is A358586, strict A358585.
A000081 counts rooted trees, ordered A000108.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internal nodes, ordered A090181.
A358589 counts square rooted trees, ranked by A358577, ordered A358590.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,{},{0,Infinity}]>=Count[#,[_],{0,Infinity}]&]],{n,1,10}]
  • PARI
    \\ See A358584 for R(n).
    seq(n) = {my(A=R(n)); vector(n, n, my(u=Vecrev(A[n]/y)); vecsum(u[(n-1)\2+1..#u]))} \\ Andrew Howroyd, Dec 31 2022

Formula

A358581(n) + A358584(n) = A000081(n).
A358582(n) + A358583(n) = A000081(n).
a(n) = Sum_{k=floor((n-1)/2)+1..n} A055277(n, k). - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(19) and beyond from Andrew Howroyd, Dec 31 2022

A358724 Difference between the number of internal (non-leaf) nodes and the edge-height of the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 1, 1, 0, 1, 2, 1, 0, 0, 2, 2, 0, 1, 0, 0, 1, 1, 0, 2, 0, 2, 1, 0, 0, 2, 1, 0, 1, 1, 0, 3, 0, 1, 1, 0, 0, 3, 0, 1, 1, 2, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2022

Keywords

Comments

Edge-height (A109082) is the number of edges in the longest path from root to leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The tree (o(o)((o))(oo)) with Matula-Goebel number 210 has edge-height 3 and 5 internal nodes, so a(210) = 2.
		

Crossrefs

Positions of 0's are A209638, complement A358725.
Positions of 1's are A358576, counted by A358587.
Other differences: A358580, A358726, A358729.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Count[MGTree[n],[_],{0,Infinity}]-(Depth[MGTree[n]]-2),{n,100}]

Formula

a(n) = A342507(n) - A109082(n).

A358726 Difference between the node-height and the number of leaves in the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

0, 1, 2, 0, 3, 1, 1, -1, 1, 2, 4, 0, 2, 0, 2, -2, 2, 0, 0, 1, 0, 3, 2, -1, 2, 1, 0, -1, 3, 1, 5, -3, 3, 1, 1, -1, 1, -1, 1, 0, 3, -1, 1, 2, 1, 1, 3, -2, -1, 1, 1, 0, -1, -1, 3, -2, -1, 2, 3, 0, 1, 4, -1, -4, 1, 2, 1, 0, 1, 0, 2, -2, 1, 0, 1, -2, 2, 0, 4, -1
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2022

Keywords

Comments

Node-height is the number of nodes in the longest path from root to leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The tree (oo(oo(o))) with Matula-Goebel number 148 has node-height 4 and 5 leaves, so a(148) = -1.
		

Crossrefs

Positions of first appearances are A007097 and latter terms of A000079.
Positions of 0's are A358577.
Other differences: A358580, A358724, A358729.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[(Depth[MGTree[n]]-1)-Count[MGTree[n],{},{0,Infinity}],{n,1000}]

Formula

a(n) = A358552(n) - A109129(n).

A358725 Matula-Goebel numbers of rooted trees with a greater number of internal (non-leaf) vertices than edge-height.

Original entry on oeis.org

9, 15, 18, 21, 23, 25, 27, 30, 33, 35, 36, 39, 42, 45, 46, 47, 49, 50, 51, 54, 55, 57, 60, 61, 63, 65, 66, 69, 70, 72, 73, 75, 77, 78, 81, 83, 84, 85, 87, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 105, 108, 110, 111, 113, 114, 115, 117, 119, 120, 121
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2022

Keywords

Comments

Edge-height (A109082) is the number of edges in the longest path from root to leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The terms together with their corresponding trees begin:
   9: ((o)(o))
  15: ((o)((o)))
  18: (o(o)(o))
  21: ((o)(oo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  30: (o(o)((o)))
  33: ((o)(((o))))
  35: (((o))(oo))
  36: (oo(o)(o))
  39: ((o)(o(o)))
  42: (o(o)(oo))
  45: ((o)(o)((o)))
  46: (o((o)(o)))
  47: (((o)((o))))
  49: ((oo)(oo))
  50: (o((o))((o)))
		

Crossrefs

Complement of A209638 (the case of equality).
These trees are counted by A316321.
Positions of positive terms in A358724.
The case of equality for node-height is A358576.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936
A055277 counts rooted trees by nodes and leaves, ordered A001263.
Differences: A358580, A358724, A358726, A358729.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[MGTree[#],[_],{0,Infinity}]>Depth[MGTree[#]]-2&]

Formula

A342507(a(n)) > A109082(a(n)).

A358107 Number of unlabeled trees covering 2n nodes, n+1 of which are leaves.

Original entry on oeis.org

1, 1, 2, 6, 26, 119, 626, 3495, 20688, 127339, 810418, 5293790, 35351571, 240478715, 1662071181, 11646620758, 82601643511, 592110678762, 4284830131865, 31271691087861, 229980550743717, 1703097703162249, 12691879796699486, 95129358337729084, 716801612475691847
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2022

Keywords

Crossrefs

Central column of A055290.
The labeled version is the central column of A055314.
For n leaves we have A359398.
A000272 counts trees, bisection A163395, unlabeled A000055.
A001187 counts connected graphs, unlabeled A001349.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A014068 counts graphs with n vertices and n-1 edges, unordered A001433.

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 01 2023

A358728 Number of n-node rooted trees whose node-height is less than their number of leaves.

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 10, 30, 76, 219, 582, 1662, 4614, 13080, 36903, 105098, 298689, 852734, 2434660, 6964349, 19931147, 57100177, 163647811, 469290004, 1346225668, 3863239150, 11089085961, 31838349956, 91430943515, 262615909503, 754439588007, 2167711283560
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2022

Keywords

Comments

Node-height is the number of nodes in the longest path from root to leaf.

Examples

			The a(1) = 0 through a(7) = 10 trees:
  .  .  .  (ooo)  (oooo)  (ooooo)   (oooooo)
                          ((oooo))  ((ooooo))
                          (o(ooo))  (o(oooo))
                          (oo(oo))  (oo(ooo))
                          (ooo(o))  (ooo(oo))
                                    (oooo(o))
                                    ((o)(ooo))
                                    ((oo)(oo))
                                    (o(o)(oo))
                                    (oo(o)(o))
		

Crossrefs

These trees are ranked by A358727.
For internals instead of node-height we have A358581, ordered A358585.
The case of equality is A358589 (square trees), ranked by A358577.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Depth[#]-1
    				
  • PARI
    \\ Needs R(n,f) defined in A358589.
    seq(n) = {Vec(R(n, (h,p)->sum(j=h+1, n-1, polcoef(p,j,y))), -n)} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(19) and beyond from Andrew Howroyd, Jan 01 2023

A358732 Number of labeled trees covering 2n nodes, half of which are leaves.

Original entry on oeis.org

0, 12, 720, 109200, 31752000, 15186346560, 10852244282880, 10851787634688000, 14481281691676800000, 24881574582258352358400, 53525038934303849706393600, 140958354488116955062668595200, 446153762528143389466306560000000, 1671353230826683972965623004979200000
Offset: 1

Views

Author

Gus Wiseman, Dec 01 2022

Keywords

Examples

			The a(2) = 12 trees:
  {{1,2},{1,3},{2,4}}
  {{1,2},{1,3},{3,4}}
  {{1,2},{1,4},{2,3}}
  {{1,2},{1,4},{3,4}}
  {{1,2},{2,3},{3,4}}
  {{1,2},{2,4},{3,4}}
  {{1,3},{1,4},{2,3}}
  {{1,3},{1,4},{2,4}}
  {{1,3},{2,3},{2,4}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4}}
  {{1,4},{2,3},{3,4}}
		

Crossrefs

A central column of A055314.
The unlabeled rooted version is A185650.
The unlabeled version is A358107.
A000272 counts trees, bisection A163395.
A001187 counts connected graphs.
A006129 counts covering graphs.
A014068 counts graphs with n vertices and n-1 edges.

Programs

  • Mathematica
    a[n_]:=StirlingS2[2*n-2, n]*(2*n)!/n!; Array[a,14] (* Stefano Spezia, Aug 02 2024 *)
  • PARI
    a(n) = stirling(2*n-2, n, 2)*(2*n)!/n! \\ Andrew Howroyd, Dec 30 2022

Formula

a(n) = A055314(2*n, n) = Stirling2(2*n-2, n)*(2*n)!/n!. - Andrew Howroyd, Dec 30 2022

Extensions

Terms a(6) and beyond from Andrew Howroyd, Dec 30 2022

A359398 Number of unlabeled trees covering 2n nodes, half of which are leaves.

Original entry on oeis.org

0, 1, 2, 8, 32, 158, 833, 4755, 28389, 176542, 1131055, 7432876, 49873477, 340658595, 2362652648, 16605707901, 118082160358, 848399575321, 6152038125538, 44981009272740, 331344933928536, 2457372361637286, 18337490246234464, 137612955519565773, 1038076541372187991
Offset: 1

Views

Author

Gus Wiseman, Jan 01 2023

Keywords

Crossrefs

Left of central column of A055290.
The labeled version is the left of central column of A055314.
The rooted version is A185650.
For n+1 leaves we have A358107.
The labeled version is A358732.
A000272 counts trees, bisection A163395, unlabeled A000055.
A001187 counts connected graphs, unlabeled A001349.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A014068 counts graphs with n vertices and n-1 edges, unlabeled A001433.

Formula

a(n) = A055290(2*n, n). - Andrew Howroyd, Jan 01 2023

Extensions

Terms a(12) and beyond from Andrew Howroyd, Jan 01 2023

A358727 Matula-Goebel numbers of rooted trees with greater number of leaves (width) than node-height.

Original entry on oeis.org

8, 16, 24, 28, 32, 36, 38, 42, 48, 49, 53, 54, 56, 57, 63, 64, 72, 76, 80, 81, 84, 96, 98, 104, 106, 108, 112, 114, 120, 126, 128, 131, 133, 136, 140, 144, 147, 148, 152, 156, 159, 160, 162, 168, 171, 172, 178, 180, 182, 184, 189, 190, 192, 196, 200, 204, 208
Offset: 1

Views

Author

Gus Wiseman, Dec 01 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Node-height is the number of nodes in the longest path from root to leaf.

Examples

			The terms together with their corresponding rooted trees begin:
   8: (ooo)
  16: (oooo)
  24: (ooo(o))
  28: (oo(oo))
  32: (ooooo)
  36: (oo(o)(o))
  38: (o(ooo))
  42: (o(o)(oo))
  48: (oooo(o))
  49: ((oo)(oo))
  53: ((oooo))
  54: (o(o)(o)(o))
  56: (ooo(oo))
  57: ((o)(ooo))
  63: ((o)(o)(oo))
  64: (oooooo)
  72: (ooo(o)(o))
  76: (oo(ooo))
		

Crossrefs

Positions of negative terms in A358726.
These trees are counted by A358728.
Differences: A358580, A358724, A358726, A358729.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.

Programs

  • Mathematica
    MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Depth[MGTree[#]]-1
    				

A358723 Number of n-node rooted trees of edge-height equal to their number of leaves.

Original entry on oeis.org

0, 1, 0, 2, 1, 6, 7, 26, 43, 135, 276, 755, 1769, 4648, 11406, 29762, 75284, 195566, 503165, 1310705, 3402317, 8892807, 23231037, 60906456, 159786040, 420144405, 1105673058, 2914252306, 7688019511, 20304253421, 53667498236, 141976081288, 375858854594, 995728192169
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2022

Keywords

Comments

Edge-height (A109082) is the number of edges in the longest path from root to leaf.

Examples

			The a(1) = 0 through a(7) = 7 trees:
  .  (o)  .  ((oo))  ((o)(o))  (((ooo)))  (((o))(oo))
             (o(o))            ((o(oo)))  (((o)(oo)))
                               ((oo(o)))  ((o)((oo)))
                               (o((oo)))  ((o)(o(o)))
                               (o(o(o)))  ((o(o)(o)))
                               (oo((o)))  (o((o)(o)))
                                          (o(o)((o)))
		

Crossrefs

For internals instead of leaves: A011782, ranked by A209638.
For internals instead of edge-height: A185650 aerated, ranked by A358578.
For node-height: A358589 (square trees), ranked by A358577, ordered A358590.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internals, ordered A090181.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,{},{-2}]==Depth[#]-2&]],{n,1,10}]
  • PARI
    \\ Needs R(n,f) defined in A358589.
    seq(n) = {Vec(R(n, (h,p)->polcoef(p,h-1,y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(19) and beyond from Andrew Howroyd, Jan 01 2023
Previous Showing 21-30 of 30 results.