A187666
Binomial convolution of the (signless) central Lah numbers (A187535) and the (signless) central Stirling numbers of the first kind (A187646).
Original entry on oeis.org
1, 3, 51, 1599, 74545, 4654255, 365549495, 34642467783, 3846064986001, 489429448820811, 70208261310969435, 11205444535728231855, 1969021774778391995761, 377672618542009829524551, 78507169034687468202172591
Offset: 0
-
L := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
seq(sum(binomial(n,k)*L(k)*abs(combinat[stirling1](2*(n-k),n-k)),k=0..n),n=0..12);
-
L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
Table[Sum[Binomial[n,k]L[k]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 14}]
-
L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
makelist(sum(binomial(n,k)*L(k)*abs(stirling1(2*n-2*k,n-k)),k,0,n),n,0,12);
A187548
Alternating partial sums of L(n)*H(n+1), product of central Lah number L(n) and Harmonic number H(n+1).
Original entry on oeis.org
1, 2, 64, 2436, 131824, 9203264, 787735648, 79884060128, 9366719620672, 1246887723480128, 185786630586649792, 30635253866287585088, 5538860010787064796352, 1089574788981508858403648, 231683608824013918904796352, 52954849085008593516185123648
Offset: 0
-
H := proc(n) add(1/i,i=1..n) ; end proc:
A187535 := proc(n) if n=0 then 1; else binomial(2*n-1, n-1)*(2*n)!/n! end if; end proc:
A187547 := proc(n) H(n+1)*A187535(n) ; end proc:
A187548 := proc(n) add( A187547(k)*(-1)^(n-k),k=0..n) ; end proc:
seq(A187548(n),n=0..20) ; # R. J. Mathar, Mar 24 2011
-
Table[Sum[(-1)^n+(-1)^(n-k)Binomial[2k-1,k-1](2k)!/k!HarmonicNumber[k+1],{k,1,n}],{n,0,12}]
-
makelist((-1)^n+sum((-1)^(n-k)*binomial(2*k-1,k-1)*(2*k)!/k!*sum(1/i,i,1,k+1),k,1,n),n,0,12);
A248045
(2*(n-1))! * (2*n-1)! / (n * (n-1)!^3).
Original entry on oeis.org
1, 6, 120, 4200, 211680, 13970880, 1141620480, 111307996800, 12614906304000, 1629845894476800, 236475822507724800, 38072607423743692800, 6735922851893114880000, 1299070835722243584000000, 271245990498804460339200000, 60962536364606302461235200000
Offset: 1
A123072
Bishops on an 8n+1 X 8n+1 board (see Robinson paper for details).
Original entry on oeis.org
1, 2, 72, 7200, 1411200, 457228800, 221298739200, 149597947699200, 134638152929280000, 155641704786247680000, 224746621711341649920000, 396453040698806670458880000, 838894634118674914690990080000, 2097236585296687286727475200000000, 6115541882725140128097317683200000000
Offset: 0
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [The sequence zeta(2k+1).]
-
For Maple program see A005635.
-
Table[(((2 n)!/n!)^2)/2, {n, 1, 20}] (* Benedict W. J. Irwin, Jun 05 2016 *)
Table[SeriesCoefficient[Series[1/2 + EllipticK[16 x]/Pi, {x, 0, 20}],n] n! n!, {n, 1, 20}] (* Benedict W. J. Irwin, Jun 05 2016 *)
A187665
Binomial convolution of the central Lah numbers and the central Stirling numbers of the second kind.
Original entry on oeis.org
1, 3, 47, 1440, 67533, 4280175, 341307292, 32750424588, 3670267277749, 470237282353989, 67781221867781615, 10855095004543985756, 1912103925425230231884, 367398970712627913234708, 76469792506315229551855080
Offset: 0
-
A048993 := proc(n,k) combinat[stirling2](n, k) ; end proc:
A187535 := proc(n) if n=0 then 1 else binomial(2*n-1, n-1)*(2*n)!/n! end if; end proc:
A187665 := proc(n) add(binomial(n,k)*A187535(k)*A048993(2*n-2*k,n-k), k=0..n) ; end proc:
seq(A187665(n),n=0..10) ; # R. J. Mathar, Mar 28 2011
-
L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
Table[Sum[Binomial[n,k]L[k]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 14}]
-
L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
makelist(sum(binomial(n,k)*L(k)*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);
A355004
a(n) = Sum_{k=0..n} A271703(k + n, n), row sums of A355005.
Original entry on oeis.org
1, 3, 43, 1333, 63321, 4034341, 321994723, 30869387193, 3454384526353, 441903886812721, 63608031487665171, 10174227287873082853, 1790258521269694523113, 343669522619597368671933, 71473405251333054552561091, 16008271911444915765782477041, 3841639137772270982094393928353
Offset: 0
-
L := (n, k) -> ifelse(n = k, 1, binomial(n-1, k-1)*n! / k!):
seq(add(L(n + k, n), k = 0..n), n = 0..16);
-
Table[Sum[Binomial[n + k, n]*FactorialPower[n + k - 1, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 15 2022 *)
A355005
Table read by rows. T(n, k) = n*((k + n)!)^2/((k + n)*(n!)^2*k!) for n > 0 and T(0, 0) = 1.
Original entry on oeis.org
1, 1, 2, 1, 6, 36, 1, 12, 120, 1200, 1, 20, 300, 4200, 58800, 1, 30, 630, 11760, 211680, 3810240, 1, 42, 1176, 28224, 635040, 13970880, 307359360, 1, 56, 2016, 60480, 1663200, 43908480, 1141620480, 29682132480, 1, 72, 3240, 118800, 3920400, 122316480, 3710266560, 111307996800, 3339239904000
Offset: 0
[0] 1;
[1] 1, 2;
[2] 1, 6, 36;
[3] 1, 12, 120, 1200;
[4] 1, 20, 300, 4200, 58800;
[5] 1, 30, 630, 11760, 211680, 3810240;
[6] 1, 42, 1176, 28224, 635040, 13970880, 307359360;
[7] 1, 56, 2016, 60480, 1663200, 43908480, 1141620480, 29682132480;
-
T := (n, k) -> ifelse(n = 0, 1, n*((k + n)!)^2 / ((k + n)*(n!)^2*k!)):
seq(seq(T(n, k), k = 0..n), n = 0..8);
A361893
Triangle read by rows. T(n, k) = n! * binomial(n - 1, k - 1) / (n - k)!.
Original entry on oeis.org
1, 0, 1, 0, 2, 2, 0, 3, 12, 6, 0, 4, 36, 72, 24, 0, 5, 80, 360, 480, 120, 0, 6, 150, 1200, 3600, 3600, 720, 0, 7, 252, 3150, 16800, 37800, 30240, 5040, 0, 8, 392, 7056, 58800, 235200, 423360, 282240, 40320, 0, 9, 576, 14112, 169344, 1058400, 3386880, 5080320, 2903040, 362880
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, 2, 2;
[3] 0, 3, 12, 6;
[4] 0, 4, 36, 72, 24;
[5] 0, 5, 80, 360, 480, 120;
[6] 0, 6, 150, 1200, 3600, 3600, 720;
[7] 0, 7, 252, 3150, 16800, 37800, 30240, 5040;
[8] 0, 8, 392, 7056, 58800, 235200, 423360, 282240, 40320;
[9] 0, 9, 576, 14112, 169344, 1058400, 3386880, 5080320, 2903040, 362880;
-
A361893 := (n, k) -> n!*binomial(n - 1, k - 1)/(n - k)!:
seq(seq(A361893(n,k), k = 0..n), n = 0..9);
# Using the egf.:
egf := 1 + (x*y/(1 - x*y))*exp(y/(1 - x*y)): ser := series(egf, y, 10):
poly := n -> convert(n!*expand(coeff(ser, y, n)), polynom):
row := n -> seq(coeff(poly(n), x, k), k = 0..n): seq(print(row(n)), n = 0..6);
A343581
a(n) = binomial(n, floor(n/2))*FallingFactorial(n - 1, n - floor(n/2)).
Original entry on oeis.org
1, 0, 2, 6, 36, 240, 1200, 12600, 58800, 846720, 3810240, 69854400, 307359360, 6849722880, 29682132480, 779155977600, 3339239904000, 100919250432000, 428906814336000, 14668613050291200, 61934143990118400, 2364758225077248000, 9931984545324441600, 418798681661180620800
Offset: 0
-
a := n -> `if`(n=0, 1, binomial(n - 1, iquo(n,2) - 1)*n!/iquo(n, 2)!):
seq(a(n), n = 0..21);
-
a(n) = sum(j=n\2, n, abs(stirling(n, j, 1))*stirling(j, n\2, 2)); \\ Michel Marcus, Apr 22 2021
-
def a(n): return binomial(n, n - n//2)*falling_factorial(n - 1, n - n//2)
print([a(n) for n in range(22)])
Comments