cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A187666 Binomial convolution of the (signless) central Lah numbers (A187535) and the (signless) central Stirling numbers of the first kind (A187646).

Original entry on oeis.org

1, 3, 51, 1599, 74545, 4654255, 365549495, 34642467783, 3846064986001, 489429448820811, 70208261310969435, 11205444535728231855, 1969021774778391995761, 377672618542009829524551, 78507169034687468202172591
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Programs

  • Maple
    L := n -> if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n! fi;
    seq(sum(binomial(n,k)*L(k)*abs(combinat[stirling1](2*(n-k),n-k)),k=0..n),n=0..12);
  • Mathematica
    L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
    Table[Sum[Binomial[n,k]L[k]Abs[StirlingS1[2n - 2k, n - k]], {k, 0, n}], {n, 0, 14}]
  • Maxima
    L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
    makelist(sum(binomial(n,k)*L(k)*abs(stirling1(2*n-2*k,n-k)),k,0,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * Lah(2k,k) * Stirling1(2n-2k,n-k).
a(n) ~ c * 2^(4*n + 1/2) * n^(n - 1/2) / (sqrt(Pi) * exp(n)), where c = Sum_{k>=0} abs(Stirling1(2*k,k)) / (k! * 2^(4*k+1)) = 0.550990257867992515027936630097897... - Vaclav Kotesovec, May 30 2025

A187548 Alternating partial sums of L(n)*H(n+1), product of central Lah number L(n) and Harmonic number H(n+1).

Original entry on oeis.org

1, 2, 64, 2436, 131824, 9203264, 787735648, 79884060128, 9366719620672, 1246887723480128, 185786630586649792, 30635253866287585088, 5538860010787064796352, 1089574788981508858403648, 231683608824013918904796352, 52954849085008593516185123648
Offset: 0

Views

Author

Emanuele Munarini, Mar 11 2011

Keywords

Crossrefs

Programs

  • Maple
    H := proc(n) add(1/i,i=1..n) ; end proc:
    A187535 := proc(n) if n=0 then 1; else binomial(2*n-1, n-1)*(2*n)!/n! end if; end proc:
    A187547 := proc(n) H(n+1)*A187535(n) ; end proc:
    A187548 := proc(n) add( A187547(k)*(-1)^(n-k),k=0..n) ; end proc:
    seq(A187548(n),n=0..20) ; # R. J. Mathar, Mar 24 2011
  • Mathematica
    Table[Sum[(-1)^n+(-1)^(n-k)Binomial[2k-1,k-1](2k)!/k!HarmonicNumber[k+1],{k,1,n}],{n,0,12}]
  • Maxima
    makelist((-1)^n+sum((-1)^(n-k)*binomial(2*k-1,k-1)*(2*k)!/k!*sum(1/i,i,1,k+1),k,1,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*A187547(k).

A248045 (2*(n-1))! * (2*n-1)! / (n * (n-1)!^3).

Original entry on oeis.org

1, 6, 120, 4200, 211680, 13970880, 1141620480, 111307996800, 12614906304000, 1629845894476800, 236475822507724800, 38072607423743692800, 6735922851893114880000, 1299070835722243584000000, 271245990498804460339200000, 60962536364606302461235200000
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 30 2014

Keywords

Comments

Central terms in triangles of Lah numbers: a(n) = - A008297(2*n-1,n) = A105278(2*n-1,n) = A000891(n-1)*A000142(n) = A000894(n-1)*A000142(n-1).
a(n) = n * A204515(n-1). - Reinhard Zumkeller, Oct 19 2014

Crossrefs

Cf. A187535 (Central Lah numbers).

Programs

  • Haskell
    a248045 n = a000891 (n - 1) * a000142 n

Formula

n*a(n) = 4*(2*n-1)*(2*n-3)*a(n-1). - R. J. Mathar, Oct 07 2014

A123072 Bishops on an 8n+1 X 8n+1 board (see Robinson paper for details).

Original entry on oeis.org

1, 2, 72, 7200, 1411200, 457228800, 221298739200, 149597947699200, 134638152929280000, 155641704786247680000, 224746621711341649920000, 396453040698806670458880000, 838894634118674914690990080000, 2097236585296687286727475200000000, 6115541882725140128097317683200000000
Offset: 0

Views

Author

N. J. A. Sloane, Sep 28 2006

Keywords

Crossrefs

Programs

  • Maple
    For Maple program see A005635.
  • Mathematica
    Table[(((2 n)!/n!)^2)/2, {n, 1, 20}] (* Benedict W. J. Irwin, Jun 05 2016 *)
    Table[SeriesCoefficient[Series[1/2 + EllipticK[16 x]/Pi, {x, 0, 20}],n] n! n!, {n, 1, 20}] (* Benedict W. J. Irwin, Jun 05 2016 *)

Formula

From_Reinhard Zumkeller_, Feb 16 2010: (Start)
a(n) = ceiling((((2*n)! / n!)^2) / 2).
a(n) = A001700(n-1) * A010050(n). (End)
From Benedict W. J. Irwin, Jun 05 2016: (Start)
G.f. for a(n)/(n!)^2 : 1/2 + EllipticK(16*x)/Pi, which is the E.g.f for A187535.
G.f. for a(n)/(n!)^3 : 2F2(1/2, 1/2; 1, 1; 16z)/2.
a(n) = n!*A187535(n) = binomial(2*n-1, n-1)*(2*n)!.
(End)
a(n) = A156992(2n,n). - Alois P. Heinz, Apr 30 2017
a(n) ~ asy(2*n-1) where asy(n) = (2*n/e)^n*(18*n + 6 + 1/n)/9. - Peter Luschny, Dec 05 2019
Sum_{n>=0} 1/a(n) = 1 + StruveL(0, 1/2)*Pi/4, where StruveL is the modified Struve function. - Amiram Eldar, Dec 04 2022

Extensions

a(0)=1 prepended by Alois P. Heinz, Apr 30 2017

A187665 Binomial convolution of the central Lah numbers and the central Stirling numbers of the second kind.

Original entry on oeis.org

1, 3, 47, 1440, 67533, 4280175, 341307292, 32750424588, 3670267277749, 470237282353989, 67781221867781615, 10855095004543985756, 1912103925425230231884, 367398970712627913234708, 76469792506315229551855080
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Programs

  • Maple
    A048993 := proc(n,k) combinat[stirling2](n, k) ; end proc:
    A187535 := proc(n) if n=0 then 1 else binomial(2*n-1, n-1)*(2*n)!/n! end if; end proc:
    A187665 := proc(n) add(binomial(n,k)*A187535(k)*A048993(2*n-2*k,n-k), k=0..n) ; end proc:
    seq(A187665(n),n=0..10)  ; # R. J. Mathar, Mar 28 2011
  • Mathematica
    L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
    Table[Sum[Binomial[n,k]L[k]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 14}]
  • Maxima
    L(n):= if n=0 then 1 else binomial(2*n-1,n-1)*(2*n)!/n!;
    makelist(sum(binomial(n,k)*L(k)*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*A187535(k)* A048993(2n-2k,n-k).
a(n) ~ c * 16^n * (n-1)!, where c = (1/Pi) * Sum_{k>=0} abs(Stirling2(2*k,k)) / (k! * 2^(4*k+1)) = 0.172113078600558193773... - Vaclav Kotesovec, Jul 05 2021, updated May 30 2025

A355004 a(n) = Sum_{k=0..n} A271703(k + n, n), row sums of A355005.

Original entry on oeis.org

1, 3, 43, 1333, 63321, 4034341, 321994723, 30869387193, 3454384526353, 441903886812721, 63608031487665171, 10174227287873082853, 1790258521269694523113, 343669522619597368671933, 71473405251333054552561091, 16008271911444915765782477041, 3841639137772270982094393928353
Offset: 0

Views

Author

Peter Luschny, Jun 15 2022

Keywords

Crossrefs

Cf. A271703 (unsigned Lah), A355005, A187535.

Programs

  • Maple
    L := (n, k) -> ifelse(n = k, 1, binomial(n-1, k-1)*n! / k!):
    seq(add(L(n + k, n), k = 0..n), n = 0..16);
  • Mathematica
    Table[Sum[Binomial[n + k, n]*FactorialPower[n + k - 1, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 15 2022 *)

Formula

a(n) = A187535(n) * hypergeom([1, -n], [1 - 2*n, -2*n], -1).
From Vaclav Kotesovec, Jun 15 2022: (Start)
Recurrence: (n-1)^2 * n * (64*n^4 - 464*n^3 + 1244*n^2 - 1475*n + 663)*a(n) = (n-1)*(2*n-3)*(512*n^6 - 3968*n^5 + 11872*n^4 - 17336*n^3 + 12880*n^2 - 4597*n + 617)*a(n-1) + (2048*n^7 - 19968*n^6 + 78912*n^5 - 163216*n^4 + 191140*n^3 - 128857*n^2 + 48842*n - 8937)*a(n-2) + 4*(2*n-5)*(2*n-3)*(64*n^4 - 208*n^3 + 236*n^2 - 123*n + 32)*a(n-3).
a(n) ~ 2^(4*n - 1/2) * n^(n - 1/2) / (sqrt(Pi) * exp(n)). (End)

A355005 Table read by rows. T(n, k) = n*((k + n)!)^2/((k + n)*(n!)^2*k!) for n > 0 and T(0, 0) = 1.

Original entry on oeis.org

1, 1, 2, 1, 6, 36, 1, 12, 120, 1200, 1, 20, 300, 4200, 58800, 1, 30, 630, 11760, 211680, 3810240, 1, 42, 1176, 28224, 635040, 13970880, 307359360, 1, 56, 2016, 60480, 1663200, 43908480, 1141620480, 29682132480, 1, 72, 3240, 118800, 3920400, 122316480, 3710266560, 111307996800, 3339239904000
Offset: 0

Views

Author

Peter Luschny, Jun 15 2022

Keywords

Examples

			[0] 1;
[1] 1,  2;
[2] 1,  6,   36;
[3] 1, 12,  120,  1200;
[4] 1, 20,  300,  4200,   58800;
[5] 1, 30,  630, 11760,  211680,  3810240;
[6] 1, 42, 1176, 28224,  635040, 13970880,  307359360;
[7] 1, 56, 2016, 60480, 1663200, 43908480, 1141620480, 29682132480;
		

Crossrefs

T(n, 1) = A002378, T(n, n) = A187535, A355004 (row sums), A271703 (Lah).

Programs

  • Maple
    T := (n, k) -> ifelse(n = 0, 1, n*((k + n)!)^2 / ((k + n)*(n!)^2*k!)):
    seq(seq(T(n, k), k = 0..n), n = 0..8);

Formula

T(n, k) = Lah(k + n, n), where Lah denotes the unsigned Lah numbers A271703.

A361893 Triangle read by rows. T(n, k) = n! * binomial(n - 1, k - 1) / (n - k)!.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 3, 12, 6, 0, 4, 36, 72, 24, 0, 5, 80, 360, 480, 120, 0, 6, 150, 1200, 3600, 3600, 720, 0, 7, 252, 3150, 16800, 37800, 30240, 5040, 0, 8, 392, 7056, 58800, 235200, 423360, 282240, 40320, 0, 9, 576, 14112, 169344, 1058400, 3386880, 5080320, 2903040, 362880
Offset: 0

Views

Author

Peter Luschny, Mar 28 2023

Keywords

Examples

			Triangle T(n, k) starts:
  [0] 1;
  [1] 0, 1;
  [2] 0, 2,   2;
  [3] 0, 3,  12,     6;
  [4] 0, 4,  36,    72,     24;
  [5] 0, 5,  80,   360,    480,     120;
  [6] 0, 6, 150,  1200,   3600,    3600,     720;
  [7] 0, 7, 252,  3150,  16800,   37800,   30240,    5040;
  [8] 0, 8, 392,  7056,  58800,  235200,  423360,  282240,   40320;
  [9] 0, 9, 576, 14112, 169344, 1058400, 3386880, 5080320, 2903040, 362880;
		

Crossrefs

Cf. A052852 (row sums), A317365 (alternating row sums), A000142 (main diagonal), A187535 (central column), A062119, A055303, A011379.

Programs

  • Maple
    A361893 := (n, k) -> n!*binomial(n - 1, k - 1)/(n - k)!:
    seq(seq(A361893(n,k), k = 0..n), n = 0..9);
    # Using the egf.:
    egf := 1 + (x*y/(1 - x*y))*exp(y/(1 - x*y)): ser := series(egf, y, 10):
    poly := n -> convert(n!*expand(coeff(ser, y, n)), polynom):
    row := n -> seq(coeff(poly(n), x, k), k = 0..n): seq(print(row(n)), n = 0..6);

Formula

T(n, k) = k! * binomial(n, k) * binomial(n - 1, k - 1).
T(n + 1, k + 1) / (n + 1) = A144084(n, k) = (-1)^(n - k)*A021010(n, k).
T(n, k) = [x^k] n! * ([y^n](1 + (x*y / (1 - x*y)) * exp(y / (1 - x*y)))).

A343581 a(n) = binomial(n, floor(n/2))*FallingFactorial(n - 1, n - floor(n/2)).

Original entry on oeis.org

1, 0, 2, 6, 36, 240, 1200, 12600, 58800, 846720, 3810240, 69854400, 307359360, 6849722880, 29682132480, 779155977600, 3339239904000, 100919250432000, 428906814336000, 14668613050291200, 61934143990118400, 2364758225077248000, 9931984545324441600, 418798681661180620800
Offset: 0

Views

Author

Peter Luschny, Apr 21 2021

Keywords

Comments

Partially ordered sets on n elements that consist entirely of floor(n/2) chains (nonempty, linearly ordered subsets).

Crossrefs

Programs

  • Maple
    a := n -> `if`(n=0, 1, binomial(n - 1, iquo(n,2) - 1)*n!/iquo(n, 2)!):
    seq(a(n), n = 0..21);
  • PARI
    a(n) = sum(j=n\2, n, abs(stirling(n, j, 1))*stirling(j, n\2, 2)); \\ Michel Marcus, Apr 22 2021
  • SageMath
    def a(n): return binomial(n, n - n//2)*falling_factorial(n - 1, n - n//2)
    print([a(n) for n in range(22)])
    

Formula

a(n) = Sum_{j=floor(n/2)..n} |Stirling1(n, j)|*Stirling2(j, floor(n/2)).
a(n) = binomial(n - 1, floor(n/2) - 1)*n!/floor(n/2)! for n >= 1, a(0) = 1.
a(n) = A271703(n, floor(n/2)).
Previous Showing 11-19 of 19 results.