cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 66 results. Next

A210207 Area A of the non-right triangles such that A, the sides, and the circumradius are integers.

Original entry on oeis.org

168, 432, 480, 624, 672, 768, 1320, 1512, 1536, 1560, 1680, 1728, 1848, 1920, 2040, 2304, 2376, 2496, 2520, 2688, 2856, 3024, 3072, 3240, 3696, 3720, 3840, 3864, 3888, 4104, 4200, 4320, 4536, 5280, 5376, 5616, 5712, 6000, 6048, 6144, 6240, 6552, 6720, 6912
Offset: 1

Views

Author

Michel Lagneau, Mar 18 2012

Keywords

Comments

A103251 gives the areas of right triangles with the same property (the area, the sides, and the circumradius are integers). Thus the intersection of this sequence with A103251 will give the areas of 2 families of triangles with the same property: one family of right triangles and one family of non-right triangles.
For example a(3) = A103251(8) = 480 generates two triangles whose sides are
(a,b,c) = (32, 50, 78) = > A = 480, R = 65, and 32^2 + 50^2 is no square;
(a,b,c) = (20, 48, 52) = > A = 480, R = 26, and 20^2 + 48^2 = 52^2 is square.
{a(n) intersection A103251} = {480, 1320, 1536, 1920, 2520, 3024, 3696, 3840, ...}

Examples

			168 is in the sequence because, for (a,b,c) = (14,30,40), A = sqrt(42*(42-14)*(42-30)*(42-40)) = 168, and 14^2 + 30^2 is no square.
		

Crossrefs

Programs

  • Maple
    T:=array(1..4000):nn:=400:k:=0:for a from 1
    to nn do: for b from a to nn do: for c from b to nn do:  p:=(a+b+c)/2 : x:=p*(p-a)*(p-b)*(p-c): u:=a^2+b^2:if  x>0 then x1:=sqrt(x) : y:=a*b*c/(4*x1):
    else fi:if x1=floor(x1) and y = floor(y) and u <> c^2 then k:=k+1:T[k]:=x1:else fi:od:od:od: L := [seq(T[i],i=1..k)]:L1:=convert(T,set):A:=sort(L1, `<`): print(A):
  • Mathematica
    nn=400; lst={}; Do[s=(a+b+c)/2; If[IntegerQ[s], area2=s (s-a) (s-b) (s-c); If[0 < area2 && a^2 != b^2+c^2 && IntegerQ[Sqrt[area2]] && IntegerQ[a*b*c/(4*Sqrt[area2])], AppendTo[lst, Sqrt[area2]]]], {a,nn}, {b,a}, {c,b}]; Union[lst]

Formula

Area A = sqrt(s*(s-a)*(s-b)*(s-c)) with s = (a+b+c)/2 (Heron's formula);
Circumradius R = a*b*c/4A.

A231174 Integer areas of integer-sided triangles such that the distance between the incenter and the circumcenter is an integer.

Original entry on oeis.org

48, 192, 432, 768, 1200, 1728, 2352, 3072, 3840, 3888, 4800, 5808, 6000, 6912, 8112, 9408, 10800, 12288, 12960, 13872, 15360, 15552, 17328, 19200, 21168, 23232, 24000, 25392, 26880, 27648, 30000, 30720, 32448, 32928, 34560, 34992, 37632, 40368, 43200, 46128
Offset: 1

Views

Author

Michel Lagneau, Nov 05 2013

Keywords

Comments

The distance between the incenter and circumcenter is given by d = sqrt(R(R-2r)), where R is the circumradius and r is the inradius, a result known as the Euler triangle formula (see the link below).
The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s(s-a)(s-b)(s-c)), where s = (a+b+c)/2.
The inradius r is given by r = A/s and the circumradius is given by R = abc/4A.
Properties of this sequence:
It appears that the triangles are isosceles.
a(n) = 48*m where the integers m are not squarefree: {m} ={1, 4, 9, 16, 25, 36, 49, 64, 80, 81, 100, 121, 125, 144, 169, 196, 225, 256, 270, 289, ...}, and the areas of the primitive triangles are 48, 3840, 6000, ... The integers m are not squarefree.
The nonprimitive triangles of areas 4*a(n), 9*a(n), ..., p^2*a(n), ... are in the sequence.
The subsequence of the areas of triangles with inradius, circumradius and distance between the incenter and circumcenter integers is {432, 1728, 3072, 3888, 6000, 6912, ...}.
The following table gives the first values (A, a, b, c, R, r, d) where A is the area of the triangles, a, b, c are the integer sides of the triangles, R is the circumradius, r is the inradius and d is the distance between the incenter and circumcenter:
--------------------------------------------
| A | a | b | c | R | r | d |
--------------------------------------------
| 48 | 10 | 10 | 16 | 25/3 | 8/3 | 5 |
| 192 | 20 | 20 | 32 | 50/3 | 16/3 | 10 |
| 432 | 30 | 30 | 48 | 25 | 8 | 15 |
| 768 | 40 | 40 | 64 | 100/3| 32/3 | 20 |
| 1200 | 50 | 50 | 80 | 125/3| 40/3 | 25 |
| 1728 | 60 | 60 | 96 | 50 | 16 | 30 |
| 2352 | 70 | 70 | 112 | 175/3| 56/3 | 35 |
| 3072 | 80 | 80 | 96 | 50 | 24 | 10 |
| 3072 | 80 | 80 | 128 | 200/3| 64/3 | 40 |
| 3840 | 80 | 104 | 104 | 169/3| 80/3 | 13 |
| 3888 | 90 | 90 | 144 | 75 | 24 | 45 |
| 4800 |100 | 100 | 160 | 250/3| 80/3 | 50 |
| 5808 |110 | 110 | 176 | 275/3| 88/3 | 55 |
| 6000 |130 | 130 | 240 | 169 | 24 |143 |
| 6912 |120 | 120 | 144 | 75 | 36 | 15 |
| 6912 |120 | 120 | 192 | 100 | 32 | 60 |
..........................................

Crossrefs

Cf. A188158.

Programs

  • Mathematica
    nn=800;lst={};Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s (s-a)(s-b)(s-c);If[area2>0&&IntegerQ[Sqrt[area2]]&&IntegerQ[Sqrt[a*b*c/(4*Sqrt[area2])*(a*b*c/(4*Sqrt[area2])-2*Sqrt[area2]/s)]],AppendTo[lst,Sqrt[area2]]]],{a,nn},{b,a},{c,b}];Union[lst]

A289155 Smallest area of triangle with integer sides and area = n times perimeter.

Original entry on oeis.org

24, 84, 192, 336, 540, 756, 1134, 1344, 1710, 2100, 2640, 3000, 4056, 4116, 4680, 5376, 6936, 6804, 8664, 8400, 9240, 10164, 12696, 12000, 13500, 14196, 15390, 16296, 20184, 18720, 23064, 21504, 23232, 24276, 26040, 27000, 32856, 30324
Offset: 1

Views

Author

Zhining Yang, Jun 26 2017

Keywords

Examples

			For n = 4, a(4)=336 means for the smallest triangle (a,b,c) = (26,28,30), the area is 336, which is 4 times the perimeter 84.
		

Crossrefs

a(n) is the leading entry in row n of the triangle in A290451.

Programs

  • PARI
    for(k=1, 50, n=0;A=10^9; d=4*k^2; e=3*d; for(b=1, sqrt(e), for (c=2*k, e/b, if(b*c>d&&c>=b, f = (b + c)*d / (b * c - d); if(f>=c, a=floor(f); if(a==f, n++; s=2*(a+b+c)*k;if(s
    				

Formula

a(n) = A120572(2n). - Ray Chandler, Jul 27 2017

A228383 Area A of the triangle such that A, the sides, and the inradius are integers.

Original entry on oeis.org

6, 24, 30, 36, 42, 48, 54, 60, 66, 84, 96, 108, 114, 120, 126, 132, 144, 150, 156, 168, 180, 192, 198, 210, 216, 240, 252, 264, 270, 294, 300, 324, 330, 336, 360, 378, 384, 390, 396, 408, 420, 432, 456, 462, 468, 480, 486, 504, 510, 522, 528, 540, 546, 570
Offset: 1

Views

Author

Michel Lagneau, Aug 21 2013

Keywords

Comments

The sequences A208984 and A185210 are subsequences of this sequence. The corresponding inradius r are 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 3, 4, 3, ...
The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. The inradius r is given by r = A/s.
a(n) is divisible by 6 and the squares of the form 36k^2 are in the sequence.

Examples

			24 is in the sequence because for (a, b, c) = (6, 8, 10) => s =(6 + 8 + 10)/2 = 12; A = sqrt(12*(12-6)*(12-8)*(12-10)) = sqrt(576)= 24; r = A/s = 2.
		

Crossrefs

Programs

  • Mathematica
    nn = 1000; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 <= nn^2 && IntegerQ[Sqrt[area2]] && IntegerQ[Sqrt[area2]/s], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]

A226453 Integer areas of integer-sided triangles where at least one side is of prime length.

Original entry on oeis.org

6, 12, 24, 30, 36, 42, 60, 66, 72, 84, 90, 114, 120, 126, 132, 156, 180, 204, 210, 216, 234, 240, 252, 264, 270, 288, 300, 306, 330, 336, 360, 390, 396, 420, 456, 462, 504, 510, 522, 528, 546, 570, 624, 630, 660, 684, 690, 714, 720, 756, 780, 798, 840, 864
Offset: 1

Views

Author

Michel Lagneau, Sep 16 2013

Keywords

Comments

Subset of A188158.
The area of the triangles (a,b,c) are given by Heron's formula A = sqrt(s(s-a)(s-b)(s-c)) where its side lengths are a, b, c and semiperimeter s = (a+b+c)/2.
There exist triangles where two distinct integer sides are a prime number, for example:
a(n) = 6 with sides (3,4,5);
a(n) = 30 with sides (5,12,13);
a(n) = 66 with sides (11,13,20);
a(n) = 72 with sides (5,29,30);
a(n) = 114 with sides (19,20,37).
The following table gives the first values (A, a, b, c):
**********************
* A * a * b * c *
**********************
* 6 * 3 * 4 * 5 *
* 12 * 5 * 5 * 6 *
* 12 * 5 * 5 * 8 *
* 24 * 4 * 13 * 15 *
* 30 * 5 * 12 * 13 *
* 36 * 3 * 25 * 26 *
* 36 * 9 * 10 * 17 *
* 42 * 7 * 15 * 20 *
* 60 * 6 * 25 * 29 *
* 60 * 8 * 15 * 17 *
* 60 * 10 * 13 * 13 *
* 60 * 13 * 13 * 24 *
* 66 * 11 * 13 * 20 *
* 72 * 5 * 29 * 30 *
......................

Examples

			114 is in the sequence because the triangle (19, 20, 37) => semiperimeter s = (19+20+37)/2 = 38, and A = sqrt(38*(38-19)*(38-20)*(38-37)) = 114.
		

Crossrefs

Cf. A188158.

Programs

  • Mathematica
    nn=1000; lst={}; Do[s=(a+b+c)/2; If[IntegerQ[s], area2=s (s-a) (s-b) (s-c); If[0
    				

A229746 Integer areas of integer-sided triangles where two sides are of prime length.

Original entry on oeis.org

6, 12, 30, 60, 66, 72, 114, 120, 180, 210, 240, 330, 336, 360, 396, 420, 456, 660, 756, 780, 840, 900, 984, 1116, 1200, 1248, 1260, 1290, 1320, 1584, 1590, 1680, 1710, 1716, 1770, 1800, 1980, 2100, 2310, 2400, 2460, 2496, 2520, 2604, 2640, 2940, 2970, 3060, 3120
Offset: 1

Views

Author

Michel Lagneau, Sep 28 2013

Keywords

Comments

Subset of A188158. The length of the third side is an even composite number because the perimeter is always even.
The area of the triangles (a,b,c) are given by Heron's formula A = sqrt(s(s-a)(s-b)(s-c)) where its side lengths are a, b, c and semiperimeter s = (a+b+c)/2.
The following table gives the first values (A, a, b, c):
***********************
* A * a * b * c *
***********************
* 6 * 3 * 4 * 5 *
* 12 * 5 * 5 * 6 *
* 12 * 5 * 5 * 8 *
* 30 * 5 * 12 * 13 *
* 60 * 10 * 13 * 13 *
* 66 * 11 * 13 * 20 *
* 72 * 5 * 29 * 30 *
* 114 * 19 * 20 * 37 *
* 120 * 16 * 17 * 17 *
* 120 * 17 * 17 * 30 *
* 180 * 13 * 30 * 37 *
....................

Examples

			114 is in the sequence because the triangle (19, 20, 37) => semiperimeter s = (19+20+37)/2 = 38, and A = sqrt(38*(38-19)*(38-20)*(38-37)) = 114, with 19 and 37 prime numbers.
		

Crossrefs

Programs

  • Mathematica
    area[a_, b_, c_] := Module[{s = (a + b + c)/2, a2}, a2 = s (s - a) (s - b) (s - c); If[a2 < 0, 0, Sqrt[a2]]]; goodQ[a_, b_, c_] := Module[{ar = area[a, b, c]}, ar > 0 && IntegerQ[ar]]; nn = 80; t = {}; ps = Prime[Range[2, nn]]; mx = 3*ps[[-1]]; Do[If[p <= q && goodQ[p, q, e], aa = area[p, q, e]; If[aa <= mx, AppendTo[t, aa]]], {p, ps}, {q, ps}, {e, q - p + 2, p + q - 2, 2}]; t = Union[t] (* T. D. Noe, Oct 01 2013 *)

Extensions

Extended by T. D. Noe, Sep 30 2013
Missing term 2970 from Giovanni Resta, Mar 08 2017

A238369 Integer area A of triangles with side lengths in the commutative ring Z[sqrt(2)].

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 80, 81, 82, 84, 85
Offset: 1

Views

Author

Michel Lagneau, Feb 25 2014

Keywords

Comments

Generalized integer areas triangles in the ring Z[sqrt(2)] = {a + b sqrt(2)| a,b in Z}.
The sequence A188158 is included in this sequence. The numbers 2*A188158(n) are in the sequence because if the integer area of the integer-sided triangle (a, b, c) is A, the area of the triangle of sides (a*sqrt(2), b*sqrt(2), c*sqrt(2)) is 2*A.
The primitive areas are 1, 3, 7, 9, 10, 15, 17, 19, 21, 25, ... and the numbers 2^p, 3*2^p, 7*2^p, ... are in the sequence. The numbers p^2*a(n) are in the sequence.
According to the limits of the Mathematica program, it is impossible to find integer areas of values 5, 11, 13, 22, 29, 39, 45, 47, 55, 57, 58, 59, 67, 71, 73, 78, 79, 83, 87, ... with sides in the ring Z(sqrt(2)).
The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. For the same area, the number of triangles is not unique, for example the area of the triangles (3,4,5), (2,10,6*sqrt(2)),(3,6-sqrt(2),-3+5*sqrt(2)),(3,6+sqrt(2),3+5*sqrt(2)) and (7-4*sqrt(2), 3+7*sqrt(2), 4+7*sqrt(2)) is A = 6.
Geometric property of the triangles in the ring Z[sqrt(2)]
It is possible to obtain integers values (or rational values) for the irradius (and/or) the circumradius of the triangles (see the table below).
The following table gives the first values (A, a, b, c, r, R) where A is the integer area, a,b,c are the sides in Z[sqrt(2)] and r = A/p, R = a*b*c/(4*A) are respectively the values of the irradius and the circumradius.
Notation in the table:
q=sqrt(2) and irrat. = irrational numbers of the form u+v*q.
---------------------------------------------------------
| A | a | b | c | r | R |
---------------------------------------------------------
| 1 | q | q | 2 | irrat.| 1 |
| 2 | 1 | 5 | 4*q | irrat.| irrat. |
| 3 | 6 | q | 5*q | irrat.| 5 |
| 4 | 6 | 5-2*q | 5+2*q | 1/2 | 51/8 |
| 6 | 3 | 4 | 5 | 1 | 5/2 |
| 7 | 2 | 5*q | 5*q | irrat.| irrat. |
| 8 | 4 | 4 | 4*q | irrat.| irrat. |
| 9 | 6 | 3*q | 3*q | irrat.| 6 |
| 10 | 5*q | 9-2*q | -1+3*q | irrat.| irrat. |
| 12 | 5 | 5 | 6 | 3/2 | 25/8 |
| 14 | 5 | 7 | 4*q | irrat.| irrat. |
| 15 | 10 | -4+5*q | 4+5*q | irrat.| 17/3 |
| 16 | 8 | 4*q | 4*q | irrat.| 4 |
| 17 | 18 | -8+7*q | 8+7*q | irrat.| 9 |
| 18 | 6 | 6 | 6*q | irrat.| irrat. |
........................................................

Crossrefs

Cf. A188158.

Programs

  • Mathematica
    err=1/10^10;nn=40;q=Sqrt[2];lst={};lst1={};Do[If[u+q*v>0,lst=Union[lst,{u+q*v}]],{u,-nn,nn},{v,-nn,nn}];n1=Length[lst];Do[a=Part[lst,i];b=Part[lst,j];c=Part[lst,k];s=(a+b+c)/2;area2=s*(s-a)*(s-b)*(s-c);If[a*b*c !=0&&N[area2]>0&&Abs[N[Sqrt[area2]]-Round[N[Sqrt[area2]]]]
    				

A257049 Integer area of integer-sided triangle such that two sides are twin primes.

Original entry on oeis.org

6, 66, 6810, 72006, 182430, 370614, 3203694, 6353634, 28698786, 33163770, 55637466, 105470250, 151375626, 178631034, 185921166, 217064574, 376267326, 853918566, 1172755854, 1443472134, 1472632266, 2217439890, 6709586934, 13826592870, 17356640970, 18127936590
Offset: 1

Views

Author

Michel Lagneau, Apr 23 2015

Keywords

Comments

The area of a triangle (a,b,c) is given by Heron's formula A = sqrt(s(s-a)(s-b)(s-c)) where its side lengths are a, b, c and semiperimeter s = (a+b+c)/2.
Property of the sequence:
We observe that the sides of each triangle are of the form (k^2+2, k^2+4, 2k^2+2) and Heron's formula gives immediately the area k(2k^2+4) => a(n)= 2*A086381(n)*A253639(n).
Let the triangle (a,b,c) = (p,p+2,q) with p prime. Because q = 2t is even, Heron's formula gives the area A = sqrt((p+t+1)(p-t+1)(t-1)(t+1)). Suppose p = t+1, so p-t+1 = 2 and A = 2p*sqrt(t-1). We must have t-1 = k^2 a square, hence p=k^2+2 and q= 2t = 2(k^2+1) = 2p-2.
Consequence: the greatest prime divisor of a(n) is the length of the smallest side of the corresponding triangle if and only if p and p+2 are primes.
This statement is false if we consider a triangle of sides (p,p+2,q) where p and p+2 are composite, or p prime and p+2 composite, or p composite and p+2 prime. Example: the area of the triangle (145, 147, 194) is 10584, but the greatest prime divisor of 10584 = 2^3*3^3*7^2 is 7, and 7 is not the smallest side of the triangle, and 145 is different from 2*194-2.
The following table gives the first values (A, a, b, c) where A is the integer area, a=p, b=p+2 and c are the sides with p prime.
+---------+-------+--------+------+
| A | a=p | b= p+2 | c |
+---------+-------+--------+------+
| 6 | 3 | 5 | 4 |
| 66 | 11 | 13 | 20 |
| 6810 | 227 | 229 | 452 |
| 72006 | 1091 | 1093 | 2180 |
| 182430 | 2027 | 2029 | 4052 |
| 370614 | 3251 | 3253 | 6500 |
+---------+-------+--------+------+

Crossrefs

Programs

  • Mathematica
    nn=40000; lst={}; Do[s=(2*Prime[c]-2+Prime[c+1]+Prime[c])/2; If[IntegerQ[s], area2=s (s-2*Prime[c]+2)(s-Prime[c+1])(s-Prime[c]); If[area2>0 && IntegerQ[Sqrt[area2]] && Prime[c+1]==Prime[c]+2, AppendTo[lst, Sqrt[area2]]]], {c, nn}]; Union[lst]

Formula

a(n) = 2*A086381(n)*A253639(n). - Zak Seidov, Apr 27 2015

A289156 Largest area of triangles with integer sides and area = n times perimeter.

Original entry on oeis.org

60, 1224, 8436, 34320, 103020, 254040, 546084, 1060896, 1907100, 3224040, 5185620, 8004144, 11934156, 17276280, 24381060, 33652800, 45553404, 60606216, 79399860, 102592080, 130913580, 165171864, 206255076, 255135840, 312875100, 380625960, 459637524, 551258736
Offset: 1

Views

Author

Zhining Yang, Jun 26 2017

Keywords

Examples

			For n = 4, a(4) = 34320 means for the largest triangles (a,b,c) = (66,4225,4289), the area is 34320 which is 4 times the perimeter 8580.
		

Crossrefs

Programs

  • Mathematica
    Table[4 n (2 n^2 + 1) (4 n^2 + 1), {n, 27}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {60, 1224, 8436, 34320, 103020, 254040}, 27] (* or *) Rest@ CoefficientList[Series[12 x (5 + 72 x + 166 x^2 + 72 x^3 + 5 x^4)/(1 - x)^6, {x, 0, 27}], x] (* Michael De Vlieger, Jul 03 2017 *)
  • PARI
    Vec(12*x*(5 + 72*x + 166*x^2 + 72*x^3 + 5*x^4)/(1 - x)^6 + O(x^30)) \\ Colin Barker, Jun 28 2017

Formula

From Colin Barker, Jun 28 2017: (Start)
G.f.: 12*x*(5 + 72*x + 166*x^2 + 72*x^3 + 5*x^4)/(1 - x)^6.
a(n) = 4*n*(2*n^2 + 1)*(4*n^2 + 1).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6. (End)
a(n) = A120573(2*n). - Ray Chandler, Jul 27 2017
From Elmo R. Oliveira, Sep 01 2025: (Start)
E.g.f.: 4*exp(x)*x*(15 + 138*x + 206*x^2 + 80*x^3 + 8*x^4).
a(n) = 12*A005900(n)*A053755(n) = A053755(n)*A007900(n)/2. (End)

A381336 a(n) is the smallest k > 0 for which a nondegenerate integer-sided triangle (k, k + n, c >= k + n) with an integer area exists.

Original entry on oeis.org

3, 6, 9, 12, 12, 18, 5, 7, 4, 24, 14, 36, 15, 10, 36, 14, 7, 8, 6, 21, 8, 3, 12, 5, 10, 15, 12, 20, 46, 35, 9, 28, 20, 14, 25, 16, 15, 12, 22, 21, 19, 16, 12, 6, 20, 5, 4, 10, 11, 20, 21, 30, 96, 24, 13, 9, 18, 7, 25, 63, 21, 18, 22, 9, 35, 9, 25, 21, 36, 17, 13
Offset: 1

Views

Author

Felix Huber, Mar 16 2025

Keywords

Comments

Longest sides c are in A381337.

Examples

			a(5) = 12 because the nondegenerate integer-sided triangle (12, 12 + 5, 25 >= 12 + 5) has an integer area (90), and there is no smaller k > 0 than 12 that satisfies this condition.
		

Crossrefs

Programs

  • Maple
    A381336:=proc(n)
        local k,c,s;
        for k do
            for c from k+n to 2*k+n-1 do
                s:=(n+2*k+c)/2;
                if issqr(s*(s-k)*(s-k-n)*(s-c)) then
                    return k
                fi
            od
        od;
    end proc;
    seq(A381336(n),n=1..71);
Previous Showing 11-20 of 66 results. Next