cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 48 results. Next

A189963 Decimal expansion of (5+9*sqrt(5))/12.

Original entry on oeis.org

2, 0, 9, 3, 7, 1, 7, 6, 4, 9, 7, 9, 1, 5, 0, 8, 9, 3, 8, 9, 7, 3, 5, 4, 6, 9, 1, 8, 2, 1, 5, 1, 2, 3, 8, 4, 3, 2, 4, 7, 1, 3, 0, 4, 3, 6, 3, 7, 5, 3, 1, 0, 9, 5, 9, 8, 6, 9, 8, 3, 9, 6, 0, 0, 7, 2, 4, 5, 5, 7, 3, 6, 0, 8, 9, 5, 0, 2, 0, 3, 4, 1, 2, 2, 7, 4, 7, 7, 4, 7, 2, 9, 5, 0, 7, 5, 3, 3, 7, 2, 8, 9, 3, 7, 9, 7, 7, 9, 8, 7, 7, 9, 7, 4, 7, 0, 0, 4, 2, 9, 4, 8, 5, 6, 6, 1, 7, 4, 6, 0
Offset: 1

Views

Author

Clark Kimberling, May 02 2011

Keywords

Comments

The constant at A189963 is the shape of a rectangle whose continued fraction partition consists of 5 golden rectangles. For a general discussion, see A188635.

Examples

			2.09371764979150893897354691821512384324713043637531095986983...
		

Crossrefs

Programs

  • Magma
    (5+9*Sqrt(5))/12 // G. C. Greubel, Jan 13 2018
  • Mathematica
    r=(1+5^(1/2))/2;
    FromContinuedFraction[{r,r,r,r,r}]
    FullSimplify[%]
    N[%,130]
    RealDigits[%]  (*A189963*)
    ContinuedFraction[%%]
  • PARI
    (5+9*sqrt(5))/12 \\ G. C. Greubel, Jan 13 2018
    

Formula

Continued fraction (as explained at A189959): [r,r,r,r,r], where r=(1+sqrt(5))/2. Ordinary continued fraction, as given by Mathematica program shown below:
[2,10,1,2,29,1,5,2,1,1,2,1,3,5,1,3,3,10,1,2,29,...].

A190178 Continued fraction of (1+sqrt(2)+sqrt(7+6*sqrt(2)))/2.

Original entry on oeis.org

3, 5, 1, 2, 1, 1, 1, 2, 1, 12, 1, 5, 1, 1, 2, 1, 14, 2, 9, 11, 1, 12, 1, 2, 1, 832, 1, 2, 2, 5, 1, 1, 17, 1, 2, 1, 9, 1, 12, 1, 1, 1, 6, 3, 2, 1, 1, 6, 3, 1, 1, 1, 2, 2, 1, 3, 1, 3, 3, 1, 2, 1, 45, 1, 1, 1, 1, 62, 9, 1, 1, 2, 3, 1, 6, 1, 3, 5, 1, 4
Offset: 1

Views

Author

Clark Kimberling, May 05 2011

Keywords

Comments

Equivalent to the periodic continued fraction [r,1,r,1,...] where r=1+sqrt(2), the silver ratio. For geometric interpretations of both continued fractions, see A189977 and A188635.

Crossrefs

Programs

  • Magma
    ContinuedFraction((1+Sqrt(2)+Sqrt(7+6*Sqrt(2)))/2); // G. C. Greubel, Dec 28 2017
  • Mathematica
    r = 1 + 2^(1/2);
    FromContinuedFraction[{r, 1, {r, 1}}]
    FullSimplify[%]
    ContinuedFraction[%, 100]  (* A190178 *)
    RealDigits[N[%%, 120]]     (* A190177 *)
    N[%%%, 40]
    ContinuedFraction[(1 + Sqrt[2] + Sqrt[7 + 6*Sqrt[2]])/2, 100] (* G. C. Greubel, Dec 28 2017 *)
  • PARI
    contfrac((1+sqrt(2)+sqrt(7+6*sqrt(2)))/2) \\ G. C. Greubel, Dec 28 2017
    

A190282 Continued fraction of (1+sqrt(1+r))/r, where r=sqrt(2).

Original entry on oeis.org

1, 1, 4, 6, 1, 2, 2, 2, 1, 1, 6, 1, 179, 46, 1, 1, 3, 2, 1, 1, 3, 6, 3, 1, 1, 1, 1, 2, 1, 1, 56, 1, 1, 1, 1, 66, 1, 1, 2, 17, 8, 2, 7, 12, 1, 1, 8, 1, 2, 2, 1, 1, 2, 1, 12, 1, 2, 2, 2, 2, 1, 1, 1, 8, 1, 1, 1, 1, 2, 1, 2, 5, 1, 6, 8, 1, 1, 1, 2, 7, 1, 9, 1, 2, 5, 7, 1, 6, 1, 10, 1
Offset: 1

Views

Author

Clark Kimberling, May 07 2011

Keywords

Comments

Equivalent to the periodic continued fraction [r,2,r,2,...] where r=sqrt(2). For geometric interpretations of both continued fractions, see A190281 and A188635.
a(n) = A154748(n+1) for n > 0. - Georg Fischer, Oct 14 2018

Crossrefs

Programs

  • Magma
    ContinuedFraction((1 + Sqrt(1 + Sqrt(2)))/Sqrt(2)); // G. C. Greubel, Jan 31 2018
  • Mathematica
    ContinuedFraction[(1 + Sqrt[1 + Sqrt[2]])/Sqrt[2], 50] (* G. C. Greubel, Jan 31 2018 *)
  • PARI
    contfrac((1 + sqrt(1 + sqrt(2)))/sqrt(2)) \\ G. C. Greubel, Jan 31 2018
    

A188636 Decimal expansion of length/width of a metasilver rectangle.

Original entry on oeis.org

2, 7, 7, 4, 6, 2, 2, 8, 9, 9, 5, 0, 4, 4, 8, 9, 2, 6, 3, 1, 9, 8, 2, 4, 9, 6, 3, 7, 9, 1, 9, 4, 7, 7, 5, 5, 4, 6, 6, 5, 5, 1, 0, 3, 3, 6, 5, 2, 8, 2, 0, 8, 1, 8, 7, 3, 4, 9, 5, 1, 3, 3, 9, 2, 9, 6, 5, 9, 8, 4, 1, 0, 4, 5, 2, 8, 3, 9, 2, 6, 6, 1, 8, 6, 4, 7, 1, 2, 8, 2, 0, 8, 9, 9, 5, 0, 5, 2, 0, 5, 9, 6, 5, 7, 2, 1, 2, 9, 0, 9, 4, 9, 2, 5, 1, 3, 9, 0, 2, 4, 7, 6, 0, 8, 3, 9, 2, 3, 0, 9
Offset: 1

Views

Author

Clark Kimberling, Apr 06 2011

Keywords

Comments

A metasilver rectangle is introduced here as a rectangle such that if a silver rectangle is removed from one end, the remaining rectangle is metasilver. Recall that a rectangle is silver if the removal of 2 squares from one end leaves a rectangle having the same shape s=(length/width) as the original. This metasilver ratio is given by
s=2.774622899504489263198249637919477554666...;
s=[r,r,r,r...], a periodic continued fraction, r=1+sqrt(2);
s=[2,1,3,2,3,2,7,1,1,114,11,1,2,1,...], as at A188637.

Crossrefs

Programs

  • Mathematica
    t=1+2^(1/2); r=(t+(t^2+4)^(1/2))/2
    FullSimplify[r]
    N[r, 130]
    RealDigits[N[r, 130]][[1]]

Formula

Equals (1+sqrt(2)+sqrt(H))/2, where H=7+2*sqrt(2).

A189959 Decimal expansion of (4+5*sqrt(2))/4.

Original entry on oeis.org

2, 7, 6, 7, 7, 6, 6, 9, 5, 2, 9, 6, 6, 3, 6, 8, 8, 1, 1, 0, 0, 2, 1, 1, 0, 9, 0, 5, 2, 6, 2, 1, 2, 2, 5, 9, 8, 2, 1, 2, 0, 8, 9, 8, 4, 4, 2, 2, 1, 1, 8, 5, 0, 9, 1, 4, 7, 0, 8, 4, 9, 6, 7, 2, 4, 8, 8, 4, 1, 5, 5, 9, 8, 0, 7, 7, 6, 3, 3, 7, 9, 8, 5, 6, 2, 9, 8, 4, 4, 1, 7, 9, 0, 9, 5, 5, 1, 9, 6, 5, 9, 1, 8, 7, 6, 7, 3, 0, 7, 7, 8, 8, 6, 4, 0, 3, 7, 1, 2, 8, 1, 1, 5, 6, 0, 4, 5, 0, 6, 9
Offset: 1

Views

Author

Clark Kimberling, May 02 2011

Keywords

Comments

Essentially the same as A020789. - R. J. Mathar, May 16 2011
The constant at A189959 is the shape of a rectangle whose continued fraction partition consists of 3 silver rectangles. For a general discussion, see A188635.

Examples

			2.767766952966368811002110905262122598212089844221...
		

Crossrefs

Cf. A188635.

Programs

  • Magma
    (4+5*Sqrt(2))/4 // G. C. Greubel, Jan 13 2018
  • Mathematica
    r=1+2^(1/2);
    FromContinuedFraction[{r,r,r}]
    FullSimplify[%]
    N[%,130]
    RealDigits[%]
    ContinuedFraction[%%]
    RealDigits[(4+5Sqrt[2])/4,10,150][[1]] (* Harvey P. Dale, Dec 17 2024 *)
  • PARI
    (4+5*sqrt(2))/4 \\ G. C. Greubel, Jan 13 2018
    

Formula

Continued fraction (as explained at A188635): [r,r,r], where r = 1 + sqrt(2). The ordinary continued fraction (as given by Mathematica program shown below) is as follows:
[2,1,3,3,3,1,2,1,3,3,3,1,2,1,3,3,3,1,2,1,3,3,3,1,2...]

A189961 Decimal expansion of (5+7*sqrt(5))/10.

Original entry on oeis.org

2, 0, 6, 5, 2, 4, 7, 5, 8, 4, 2, 4, 9, 8, 5, 2, 7, 8, 7, 4, 8, 6, 4, 2, 1, 5, 6, 8, 1, 1, 1, 8, 9, 3, 3, 6, 4, 8, 0, 8, 4, 3, 2, 8, 5, 1, 7, 2, 8, 0, 6, 8, 0, 0, 6, 9, 8, 9, 6, 2, 8, 0, 7, 1, 7, 8, 7, 3, 6, 4, 6, 4, 7, 9, 4, 6, 4, 6, 3, 4, 2, 9, 5, 9, 0, 0, 9, 0, 0, 8, 5, 8, 6, 5, 1, 4, 7, 5, 9, 2, 4, 7, 8, 6, 5, 5, 7, 2, 3, 3, 0, 5, 5, 4, 1, 6, 4, 8, 4, 5, 2, 9, 7, 7, 2, 8, 7, 4, 0, 7
Offset: 1

Views

Author

Clark Kimberling, May 02 2011

Keywords

Comments

The constant at A189961 is the shape of a rectangle whose continued fraction partition consists of 3 golden rectangles. For a general discussion, see A188635.

Crossrefs

Programs

  • Magma
    (5+7*Sqrt(5))/10 // G. C. Greubel, Jan 13 2018
  • Mathematica
    r=(1+5^(1/2))/2;
    FromContinuedFraction[{r,r,r}]
    FullSimplify[%]
    N[%,130]
    RealDigits[%]  (* A189961 *)
    ContinuedFraction[%%]
    RealDigits[(5+7*Sqrt[5])/10,10,150][[1]] (* Harvey P. Dale, Mar 30 2024 *)
  • PARI
    (5+7*sqrt(5))/10 \\ G. C. Greubel, Jan 13 2018
    

Formula

Continued fraction (as explained at A188635): [r,r,r], where r = (1 + sqrt(5))/2. Ordinary continued fraction, as given by Mathematica program shown below:
[2,15,3,15,3,15,3,15,3,...]
From Amiram Eldar, Feb 06 2022: (Start)
Equals phi^4/sqrt(5) - 1, where phi is the golden ratio (A001622).
Equals lim_{k->oo} Fibonacci(k+4)/Lucas(k) - 1. (End)

A189962 Decimal expansion of 3*(1 + 3*sqrt(5))/11.

Original entry on oeis.org

2, 1, 0, 2, 2, 3, 7, 4, 3, 6, 1, 3, 6, 1, 9, 1, 5, 6, 9, 7, 8, 9, 3, 2, 3, 9, 1, 0, 7, 8, 0, 1, 3, 5, 1, 0, 1, 7, 2, 4, 1, 4, 2, 2, 9, 4, 2, 2, 7, 6, 1, 1, 9, 5, 6, 2, 2, 1, 6, 4, 3, 2, 0, 0, 7, 9, 0, 4, 2, 6, 2, 1, 1, 8, 8, 5, 4, 7, 6, 7, 3, 5, 8, 8, 4, 5, 2, 0, 8, 7, 9, 5, 8, 2, 6, 4, 0, 0, 4, 3, 1, 5, 6, 8, 7, 0, 3, 2, 5, 9, 4, 1, 5, 4, 2, 1, 8, 6, 5, 0, 3, 4, 7, 9, 9, 4, 6, 3, 2, 0
Offset: 1

Views

Author

Clark Kimberling, May 02 2011

Keywords

Comments

The constant at A189961 is the shape of a rectangle whose continued fraction partition consists of 4 golden rectangles. For a general discussion, see A188635.

Examples

			2.10223743613619156978932391078013510172414229422761...
		

Crossrefs

Programs

  • Magma
    3*(1+3*Sqrt(5))/11 // G. C. Greubel, Jan 13 2018
  • Mathematica
    r=(1+5^(1/2))/2;
    FromContinuedFraction[{r,r,r,r}]
    FullSimplify[%]
    N[%,130]
    RealDigits[%]  (*A189962*)
    ContinuedFraction[%%]
    RealDigits[3 (1+3*Sqrt[5])/11,10,150][[1]] (* Harvey P. Dale, Sep 11 2023 *)
  • PARI
    3*(1+3*sqrt(5))/11 \\ G. C. Greubel, Jan 13 2018
    

Formula

Continued fraction (as explained at A188635): [r,r,r,r], where r = (1 + sqrt(5))/2. Ordinary continued fraction, as given by Mathematica program shown below:
[2,9,1,3,1,1,3,9,1,3,1,1,3,9,1,3,1,1,3,...]

Extensions

Definition corrected by G. C. Greubel, Jan 13 2018

A189971 Continued fraction of (1 + x + sqrt(14 + 10*x))/4, where x=sqrt(5).

Original entry on oeis.org

2, 3, 6, 3, 1, 2, 15, 2, 3, 6, 1, 7, 1, 4, 2, 3, 1, 4, 2, 1, 1, 1, 2, 1, 20, 17, 3, 1, 2, 3, 1, 1, 3, 1, 4, 9, 73, 1, 37, 192, 3, 1, 1, 1, 1, 5, 1, 21, 1, 6, 7, 1, 3, 3, 1, 8, 2, 2, 1, 1, 8, 1, 2, 1, 1, 8, 1, 2, 1, 20, 2, 16, 3, 19, 2, 1, 3, 7, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 9, 32, 1, 1, 10, 5, 1, 7, 5, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, May 05 2011

Keywords

Comments

Equivalent to the periodic continued fraction [r,1,r,1,...] where r=(1+sqrt(5))/2, the golden ratio. For geometric interpretations of both continued fractions, see A189970 and A188635.

Crossrefs

Programs

  • Magma
    ContinuedFraction( (1 + Sqrt(5) + Sqrt(14 + 10*Sqrt(5)) )/4 ); // G. C. Greubel, Jan 12 2018
  • Mathematica
    (See A189970.)
    ContinuedFraction[(1+Sqrt[5]+Sqrt[14+10Sqrt[5]])/4,120] (* Harvey P. Dale, Jul 31 2013 *)
  • PARI
    contfrac((1+sqrt(5)+sqrt(14+10*sqrt(5)))/4) \\ G. C. Greubel, Jan 12 2018
    

A190180 Continued fraction of (1+sqrt(-3+4*sqrt(2)))/2.

Original entry on oeis.org

1, 3, 5, 1, 2, 1, 1, 1, 2, 1, 12, 1, 5, 1, 1, 2, 1, 14, 2, 9, 11, 1, 12, 1, 2, 1, 832, 1, 2, 2, 5, 1, 1, 17, 1, 2, 1, 9, 1, 12, 1, 1, 1, 6, 3, 2, 1, 1, 6, 3, 1, 1, 1, 2, 2, 1, 3, 1, 3, 3, 1, 2, 1, 45, 1, 1, 1, 1, 62, 9, 1, 1, 2, 3, 1, 6, 1, 3, 5, 1
Offset: 1

Views

Author

Clark Kimberling, May 05 2011

Keywords

Comments

Equivalent to the periodic continued fraction [1,r,1,r,...] where r=1+sqrt(2), the silver ratio. For geometric interpretations of both continued fractions, see A189979 and A188635.
1 followed by A190178.

Crossrefs

Programs

  • Magma
    ContinuedFraction((1+Sqrt(-3+4*Sqrt(2)))/2); // G. C. Greubel, Dec 28 2017
  • Mathematica
    r = 1 + 2^(1/2);
    FromContinuedFraction[{1, r, {1, r}}]
    FullSimplify[%]
    ContinuedFraction[%, 100]  (* A190180 *)
    RealDigits[N[%%, 120]]     (* A190179 *)
    N[%%%, 40]
    ContinuedFraction[(1 + Sqrt[-3 + 4*Sqrt[2]])/2, 100] (* G. C. Greubel, Dec 28 2017 *)
  • PARI
    contfrac((1+sqrt(-3+4*sqrt(2)))/2) \\ G. C. Greubel, Dec 28 2017
    

A190184 Decimal expansion of sqrt(1+x+sqrt(1+2*x)), where x=sqrt(2/3).

Original entry on oeis.org

1, 8, 5, 4, 4, 9, 3, 6, 3, 0, 0, 4, 2, 5, 5, 8, 2, 6, 3, 6, 8, 3, 6, 4, 0, 1, 3, 2, 4, 5, 2, 7, 7, 8, 4, 7, 7, 7, 7, 8, 2, 7, 6, 9, 5, 4, 6, 6, 9, 8, 2, 5, 0, 1, 4, 1, 6, 9, 0, 5, 0, 1, 9, 7, 0, 4, 8, 4, 8, 9, 4, 1, 7, 1, 3, 9, 8, 0, 4, 0, 1, 8, 3, 1, 9, 4, 2, 0, 4, 5, 9, 9, 1, 9, 9, 8, 5, 0, 0, 8, 7, 1, 8, 7, 1, 6, 4, 7, 1, 6, 8, 8, 3, 4, 6, 2, 2, 8, 8, 9
Offset: 1

Views

Author

Clark Kimberling, May 05 2011

Keywords

Comments

The rectangle R whose shape (i.e., length/width) is sqrt(1+x+sqrt(1+2x)), where x=sqrt(2/3), can be partitioned into rectangles of shapes sqrt(2) and sqrt(3) in a manner that matches the periodic continued fraction [sqrt(2), sqrt(3), sqrt(2), sqrt(3),...]. R can also be partitioned into squares so as to match the nonperiodic continued fraction [1,1,5,1,6,1,5,1,1,...] at A190185. For details, see A188635.

Examples

			1.854493630042558263683640132452778477778...
		

Crossrefs

Cf. A190185.

Programs

  • Magma
    [Sqrt(1+Sqrt(2/3)+Sqrt(1+2*Sqrt(2/3)))]; // G. C. Greubel, Dec 28 2017
  • Mathematica
    FromContinuedFraction[{2^(1/2), 3^(1/2), {2^(1/2), 3^(1/2)}}]
    FullSimplify[%]
    ContinuedFraction[%, 100]  (* A190185 *)
    RealDigits[N[%%, 120]]      (* A190186 *)
    N[%%%, 40]
    RealDigits[Sqrt[1+Sqrt[2/3]+Sqrt[1+2*Sqrt[2/3]]], 10, 100][[1]] (* G. C. Greubel, Dec 28 2017 *)
  • PARI
    sqrt(1+sqrt(2/3)+sqrt(1+2*sqrt(2/3))) \\ G. C. Greubel, Dec 28 2017
    

Extensions

Definition corrected by Bruno Berselli, May 13 2011
Previous Showing 11-20 of 48 results. Next