cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 48 results. Next

A190185 Continued fraction of sqrt(1+x+sqrt(1+2*x)), where x=sqrt(2/3).

Original entry on oeis.org

1, 1, 5, 1, 6, 1, 5, 1, 1, 40, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 5, 1, 15, 1, 3, 1, 2, 2, 5, 1, 1, 1, 1, 4, 5, 65, 1, 13, 1, 3, 4, 1, 1, 1, 4, 13, 1, 1, 2, 1, 3, 2, 2, 1, 10, 1, 20, 4, 15, 6, 1, 3, 10, 1, 78, 1, 1, 11, 15, 1, 11, 179, 2, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 3, 2, 6, 1, 1, 7, 5, 1, 4, 1, 9, 1, 1, 2, 10, 3
Offset: 1

Views

Author

Clark Kimberling, May 05 2011

Keywords

Comments

Equivalent to the periodic continued fraction [sqrt(2), sqrt(3), sqrt(2), sqrt(3),...]. For geometric interpretations of both continued fractions, see A190184 and A188635.

Crossrefs

Programs

  • Magma
    ContinuedFraction(Sqrt(1 + Sqrt(2/3) + Sqrt(1 + 2*Sqrt(2/3)))); // G. C. Greubel, Dec 28 2017
  • Mathematica
    FromContinuedFraction[{2^(1/2), 3^(1/2), {2^(1/2), 3^(1/2)}}]
    FullSimplify[%]
    ContinuedFraction[%, 100]  (* A190185 *)
    RealDigits[N[%%, 120]]      (* A190186 *)
    N[%%%, 40]
    ContinuedFraction[Sqrt[1 + Sqrt[2/3] + Sqrt[1 + 2*Sqrt[2/3]]], 100] (* G. C. Greubel, Dec 28 2017 *)
  • PARI
    contfrac(sqrt(1 + sqrt(2/3) + sqrt(1 + 2*sqrt(2/3)))) \\ G. C. Greubel, Dec 28 2017
    

Extensions

Definition corrected by Bruno Berselli, May 13 2011

A190258 Decimal expansion of (x + sqrt(2 + 4x))/2, where x=sqrt(2).

Original entry on oeis.org

2, 0, 9, 0, 6, 5, 7, 8, 5, 0, 8, 5, 2, 2, 4, 4, 7, 7, 5, 7, 1, 0, 0, 8, 9, 6, 3, 5, 0, 0, 5, 2, 2, 1, 3, 2, 8, 0, 9, 5, 8, 8, 0, 1, 7, 1, 5, 3, 5, 0, 8, 9, 6, 1, 5, 2, 7, 0, 1, 5, 4, 0, 8, 0, 1, 3, 6, 5, 3, 8, 6, 8, 6, 5, 8, 2, 3, 0, 1, 7, 6, 3, 7, 1, 1, 4, 3, 1, 5, 0, 4, 0, 4, 6, 0, 4, 2, 6, 3, 8, 4, 6, 7, 1, 8, 0, 8, 3, 2, 7, 8, 0, 6, 7, 6, 9, 3, 2, 5, 8
Offset: 1

Views

Author

Clark Kimberling, May 06 2011

Keywords

Comments

The rectangle R whose shape (i.e., length/width) is (x+sqrt(2+4x))/2, where x=sqrt(2), can be partitioned into rectangles of shapes sqrt(2) and 1 in a manner that matches the periodic continued fraction [x, 1, x, 1, ...]. R can also be partitioned into squares so as to match the nonperiodic continued fraction [2,11,32,1,4,10,2,1,...] at A190259. For details, see A188635.

Examples

			2.090657850852244775710089635005221328095...
		

Crossrefs

Programs

  • Magma
    [(Sqrt(2) + Sqrt(2+4*Sqrt(2)))/2]; // G. C. Greubel, Dec 26 2017
  • Mathematica
    r=2^(1/2);
    FromContinuedFraction[{r,1, {r,1}}]
    FullSimplify[%]
    ContinuedFraction[%, 100]  (* A190258 *)
    RealDigits[N[%%, 120]]     (* A190259 *)
    N[%%%, 40]
    RealDigits[(Sqrt[2]+Sqrt[2+4Sqrt[2]])/2,10,120][[1]] (* Harvey P. Dale, Jun 20 2021 *)
  • PARI
    sqrt(1/2)+sqrt(1/2+sqrt(2))
    

A190259 Continued fraction of (x + sqrt(2 + 4x))/2, where x=sqrt(2).

Original entry on oeis.org

2, 11, 32, 1, 4, 10, 2, 1, 1, 3, 1, 1, 5, 2, 3, 2, 1, 4, 2, 3, 2, 41, 1, 2, 1, 1, 3, 4, 1, 35, 1, 5, 1, 29661, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 5, 2, 2, 2, 1, 1, 1, 5, 15, 2, 1, 1, 1, 2, 7, 1, 1, 1, 13, 1, 1, 1, 1, 20, 2, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 3, 14, 1
Offset: 1

Views

Author

Clark Kimberling, May 06 2011

Keywords

Crossrefs

Programs

  • Magma
    ContinuedFraction((Sqrt(2) + Sqrt(2+4*Sqrt(2)))/2); // G. C. Greubel, Dec 26 2017
  • Mathematica
    (See A190258.)
    ContinuedFraction[(Sqrt[2]+Sqrt[2+4Sqrt[2]])/2,100] (* Harvey P. Dale, Jun 16 2016 *)
  • PARI
    contfrac((sqrt(2) + sqrt(2+4*sqrt(2)))/2) \\ G. C. Greubel, Dec 26 2017
    

Extensions

Definition clarified by Harvey P. Dale, Jun 16 2016

A190260 Decimal expansion of (1 + sqrt(1 + 2*x))/2, where x=sqrt(2).

Original entry on oeis.org

1, 4, 7, 8, 3, 1, 8, 3, 4, 3, 4, 7, 8, 5, 1, 5, 9, 5, 6, 4, 2, 2, 1, 0, 4, 4, 3, 6, 3, 8, 5, 0, 2, 2, 2, 1, 5, 2, 5, 3, 2, 1, 2, 1, 1, 5, 0, 4, 9, 9, 0, 6, 4, 1, 6, 7, 0, 8, 4, 0, 3, 9, 1, 0, 2, 6, 4, 9, 9, 8, 0, 5, 4, 3, 7, 0, 5, 7, 3, 3, 2, 3, 3, 6, 7, 5, 1, 8, 8, 2, 0, 7, 4, 0, 8, 2, 1, 3, 6, 6, 9, 7, 8, 1, 0, 9, 6, 7
Offset: 1

Views

Author

Clark Kimberling, May 06 2011

Keywords

Comments

The rectangle R whose shape (i.e., length/width) is (1+sqrt(1+2x))/2, where x=sqrt(2), can be partitioned into rectangles of shapes 1 and sqrt(2) in a manner that matches the periodic continued fraction [1, x, 1, x, ...]. R can also be partitioned into squares so as to match the nonperiodic continued fraction [1, 2,11,32,1,4,10,2,1,...] at A190261. For details, see A188635.

Examples

			1.478318343478515956422104436385022215253...
		

Crossrefs

Programs

  • Magma
    [(1+Sqrt(1+2*Sqrt(2)))/2]; // G. C. Greubel, Dec 26 2017
  • Mathematica
    r=2^(1/2);
    FromContinuedFraction[{1, r, {1, r}}]
    FullSimplify[%]
    ContinuedFraction[%, 100]  (* A190261 *)
    RealDigits[N[%%, 120]]     (* A190260 *)
    N[%%%, 40]
  • PARI
    (1+sqrt(1+2*sqrt(2)))/2 \\ G. C. Greubel, Dec 26 2017
    

A190262 Decimal expansion of (3 + sqrt(9 + 12x))/6, where x=sqrt(3).

Original entry on oeis.org

1, 4, 0, 9, 5, 8, 7, 9, 6, 6, 7, 1, 3, 2, 9, 4, 7, 3, 1, 5, 1, 8, 2, 2, 6, 4, 6, 6, 1, 1, 9, 6, 5, 9, 8, 7, 6, 2, 4, 0, 7, 3, 0, 8, 8, 8, 5, 9, 1, 1, 5, 6, 3, 5, 5, 2, 8, 8, 5, 5, 5, 7, 2, 5, 2, 1, 3, 8, 1, 6, 0, 5, 3, 9, 3, 2, 6, 8, 3, 5, 4, 3, 1, 3, 3, 4, 7, 9, 9, 7, 9, 3, 8, 8, 1, 4, 6, 9, 7, 6, 0, 9, 9, 0, 7, 0, 2, 2, 6, 7, 8, 6, 1, 4, 5, 5, 4, 4, 3, 4
Offset: 1

Views

Author

Clark Kimberling, May 06 2011

Keywords

Comments

The rectangle R whose shape (i.e., length/width) is (3+sqrt(9+12x))/6, where x=sqrt(3), can be partitioned into rectangles of shapes 1 and sqrt(3) in a manner that matches the periodic continued fraction [1, x, 1, x, ...]. R can also be partitioned into squares so as to match the nonperiodic continued fraction [1, 2, 2, 3, 1, 3, 2, 1, 1, 1, ...] at A190263. For details, see A188635.

Examples

			1.409587966713294731518226466119659876240...
		

Crossrefs

Programs

  • Magma
    [(3 + Sqrt(9 + 12*Sqrt(3)))/6]; // G. C. Greubel, Dec 28 2017
  • Mathematica
    r=3^(1/2)
    FromContinuedFraction[{1, r, {1, r}}]
    FullSimplify[%]
    ContinuedFraction[%, 100]  (* A190263 *)
    RealDigits[N[%%, 120]]     (* A190262 *)
    N[%%%, 40]
    RealDigits[(3 + Sqrt[9 + 12*Sqrt[3]])/6, 10, 100] (* G. C. Greubel, Dec 28 2017 *)
  • PARI
    (3 + sqrt(9 + 12*sqrt(3)))/6 \\ G. C. Greubel, Dec 28 2017
    

A190281 Decimal expansion of (1+sqrt(1+r))/r, where r=sqrt(2).

Original entry on oeis.org

1, 8, 0, 5, 7, 9, 0, 8, 9, 4, 6, 5, 4, 3, 5, 7, 4, 9, 0, 4, 4, 0, 6, 4, 5, 5, 5, 7, 3, 4, 5, 5, 2, 7, 4, 1, 7, 8, 2, 9, 2, 2, 9, 0, 5, 8, 6, 1, 5, 6, 3, 1, 7, 8, 0, 3, 3, 2, 7, 5, 1, 4, 4, 7, 8, 3, 8, 2, 4, 1, 2, 9, 2, 7, 8, 6, 3, 3, 8, 3, 3, 0, 5, 6, 1, 7, 2, 9, 8, 3, 3, 5, 2, 0, 2, 3, 6, 7, 1, 1, 8, 6, 6, 4, 1, 2, 8, 4, 3, 8, 9, 2, 1, 9, 0, 2, 6, 9, 9, 1
Offset: 1

Views

Author

Clark Kimberling, May 07 2011

Keywords

Comments

The rectangle R whose shape (i.e., length/width) is (1+sqrt(1+r))/r, where r=sqrt(2), can be partitioned into rectangles of shapes sqrt(2) and 2 in a manner that matches the periodic continued fraction [r, 2, r, 2, ...]. R can also be partitioned into squares so as to match the nonperiodic continued fraction [1,1,4,6,1,2,2,2,1,1 ...] at A190282. For details, see A188635.

Examples

			1.805790894654357490440645557345527417829...
		

Crossrefs

Programs

  • Magma
    (1 + Sqrt(1 + Sqrt(2)))/Sqrt(2); // G. C. Greubel, Jan 31 2018
  • Mathematica
    r=2^(1/2)
    FromContinuedFraction[{r,2, {r,2}}]
    FullSimplify[%]
    ContinuedFraction[%, 100]  (* A190282 *)
    RealDigits[N[%%, 120]]     (* A190281 *)
    N[%%%, 40]
    RealDigits[(1 + Sqrt[1 + Sqrt[2]])/Sqrt[2], 10, 100][[1]] (* G. C. Greubel, Jan 31 2018 *)
  • PARI
    (1 + sqrt(1 + sqrt(2)))/sqrt(2) \\ G. C. Greubel, Jan 31 2018
    

A190283 Decimal expansion of 1+sqrt(1+sqrt(2)).

Original entry on oeis.org

2, 5, 5, 3, 7, 7, 3, 9, 7, 4, 0, 3, 0, 0, 3, 7, 3, 0, 7, 3, 4, 4, 1, 5, 8, 9, 5, 3, 0, 6, 3, 1, 4, 6, 9, 4, 8, 1, 6, 4, 5, 8, 3, 4, 9, 9, 4, 1, 0, 3, 0, 7, 8, 3, 6, 3, 3, 2, 6, 7, 1, 1, 4, 8, 3, 3, 3, 6, 7, 5, 2, 5, 6, 7, 8, 8, 7, 3, 3, 1, 0, 2, 7, 2, 7, 9, 3, 7, 8, 8, 6, 1, 1, 7, 4, 3, 6, 7, 7, 4, 4, 9, 2, 8, 8, 3, 7, 3, 3, 5, 4, 3, 6, 6, 6, 6, 6, 6, 1, 9
Offset: 1

Views

Author

Clark Kimberling, May 07 2011

Keywords

Comments

The rectangle R whose shape (i.e., length/width) is 1+sqrt(1+sqrt(2)) can be partitioned into rectangles of shapes 2 and sqrt(2) in a manner that matches the periodic continued fraction [2, r, 2, r, ...]. R can also be partitioned into squares so as to match the nonperiodic continued fraction [2,1,1,4,6,1,2,2,2,1,1,6,...] at A190284. For details, see A188635.
A quartic integer with minimal polynomial x^4 - 4x^3 + 4x^2 - 2. - Charles R Greathouse IV, Feb 09 2017

Examples

			2.553773974030037307344158953063146948165...
		

Crossrefs

Programs

  • Magma
    1+Sqrt(1+Sqrt(2)); // G. C. Greubel, Apr 14 2018
  • Mathematica
    r=2^(1/2)
    FromContinuedFraction[{2, r, {2, r}}]
    FullSimplify[%]
    ContinuedFraction[%, 100]  (* A190284 *)
    RealDigits[N[%%, 120]]     (* A190283 *)
    N[%%%, 40]
    RealDigits[1+Sqrt[1+Sqrt[2]],10,120][[1]] (* Harvey P. Dale, Aug 18 2024 *)
  • PARI
    sqrt(sqrt(2)+1)+1 \\ Charles R Greathouse IV, Feb 09 2017
    
  • PARI
    polrootsreal(x^4 - 4*x^3 + 4*x^2 - 2)[2] \\ Charles R Greathouse IV, Feb 09 2017
    

A190284 Continued fraction of 1+sqrt(1+sqrt(2)).

Original entry on oeis.org

2, 1, 1, 4, 6, 1, 2, 2, 2, 1, 1, 6, 1, 179, 46, 1, 1, 3, 2, 1, 1, 3, 6, 3, 1, 1, 1, 1, 2, 1, 1, 56, 1, 1, 1, 1, 66, 1, 1, 2, 17, 8, 2, 7, 12, 1, 1, 8, 1, 2, 2, 1, 1, 2, 1, 12, 1, 2, 2, 2, 2, 1, 1, 1, 8, 1, 1, 1, 1, 2, 1, 2, 5, 1, 6, 8, 1, 1, 1, 2, 7, 1, 9, 1, 2, 5, 7, 1, 6, 1, 10, 1, 2, 1, 3, 47, 1, 1, 998, 1
Offset: 1

Views

Author

Clark Kimberling, May 07 2011

Keywords

Comments

1

Crossrefs

Programs

  • Magma
    ContinuedFraction(1+Sqrt(1+Sqrt(2))); // G. C. Greubel, Apr 14 2018
  • Mathematica
    FromContinuedFraction[{2, Sqrt[2], {2, r}}]
    FullSimplify[%]
    ContinuedFraction[%, 100]  (* A190284 *)
    RealDigits[N[%%, 120]]     (* A190283 *)
  • PARI
    contfrac(1+sqrt(1+sqrt(2))) \\ G. C. Greubel, Apr 14 2018
    

A188637 Continued fraction for length/width of a meta-silver rectangle.

Original entry on oeis.org

2, 1, 3, 2, 3, 2, 7, 1, 1, 114, 11, 1, 2, 1, 18, 2, 1, 1, 1, 3, 15, 3, 2, 2, 6, 1, 1, 1, 1, 1, 2, 2, 200, 5, 176, 3, 3, 2, 1, 4, 3, 2, 1, 1, 5, 3, 2, 1, 2, 225, 2, 9, 1, 34, 1, 2, 3, 29, 2, 1, 9, 1, 2, 1, 73, 4, 2, 1, 8, 1, 2, 1, 21, 4, 2, 3, 1, 5, 1, 1, 2, 8, 1, 1, 2, 2, 2, 10, 3, 1, 6, 1, 21, 4, 9, 3, 1, 1, 4, 2, 28, 4, 5, 3, 3, 1, 1, 1, 3, 1, 1, 2, 2, 1, 4, 4, 8, 15, 3
Offset: 0

Views

Author

Clark Kimberling, Apr 06 2011

Keywords

Comments

See A188636 for details.

Crossrefs

Cf. A188636 (decimal expansion), A188635, A136319.

Programs

  • Mathematica
    t=1+2^(1/2); r=(t+(t^2+4)^(1/2))/2
    FullSimplify[r]
    ContinuedFraction[r,120]

Extensions

Offset changed by Andrew Howroyd, Jul 08 2024

A189964 Decimal expansion of (3+x+sqrt(38+6*x))/4, where x=sqrt(13).

Original entry on oeis.org

3, 5, 8, 1, 9, 5, 2, 9, 5, 0, 7, 1, 1, 8, 5, 0, 3, 7, 7, 0, 7, 2, 5, 3, 9, 6, 9, 5, 9, 2, 1, 0, 4, 4, 6, 8, 6, 9, 1, 1, 8, 9, 1, 5, 4, 8, 3, 4, 9, 4, 6, 1, 1, 6, 1, 2, 9, 2, 2, 2, 8, 8, 8, 0, 4, 3, 2, 0, 0, 0, 8, 5, 7, 4, 0, 5, 9, 1, 7, 7, 6, 1, 2, 0, 8, 6, 2, 5, 6, 3, 0, 7, 9, 7, 5, 9, 8, 8, 9, 6, 6, 1, 4, 9, 6, 4, 1, 2, 4, 9, 5, 2, 2, 0, 4, 9, 1, 9, 6, 2
Offset: 1

Views

Author

Clark Kimberling, May 04 2011

Keywords

Comments

This constant is the shape of a rectangle whose continued fraction partition matches [r,r,r,...], where r=(3+sqrt(13))/2. For a general discussion, see A188635. The ordinary continued fraction of r is [3,3,3,3,3,3,3,3,3,3,...]. A rectangle of shape r (that is, (length/width)=r) may be compared with the golden rectangle, with shape [1,1,1,1,1,1,...], and the silver rectangle, with shape [2,2,2,2,2,2,...].

Examples

			3.5819529507118503770725396959210446869118915483494611612922...
		

Crossrefs

Programs

  • Magma
    (3+Sqrt(13)+Sqrt(38+6*Sqrt(13)))/4 // G. C. Greubel, Jan 12 2018
  • Mathematica
    r = (3 +13^(1/2))/2;
    FromContinuedFraction[{r, {r}}]
    FullSimplify[%]
    N[%, 150]
    RealDigits[%]  (*A189964*)
    ContinuedFraction[%%, 120] (*A189965*)
  • PARI
    (3+sqrt(13)+sqrt(38+6*sqrt(13)))/4 \\ G. C. Greubel, Jan 12 2018
    
Previous Showing 21-30 of 48 results. Next