cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 48 results. Next

A189965 Continued fraction of (3+x+sqrt(38+6x))/4, where x=sqrt(13).

Original entry on oeis.org

3, 1, 1, 2, 1, 1, 4, 2, 4, 3, 1, 5, 1, 1, 3, 1, 1, 1, 2, 2, 2, 3, 2, 1, 1, 1, 2, 39, 5, 2, 1, 1, 1, 2, 49, 1, 4, 4, 1, 13, 1, 1, 2, 1, 32, 6, 2, 2, 1, 1, 35, 15, 1, 1, 1, 6, 1, 6, 1, 7, 2, 1, 2, 1, 15, 1, 2, 4, 1, 2, 3, 1, 5, 1, 1, 6, 4, 1, 1, 16, 6, 10, 3, 1, 5, 6, 2, 8, 1, 1, 1, 3, 25, 2, 10, 1, 1, 1, 3, 2, 25, 1, 2, 1, 4, 63, 1, 2, 2, 1, 287, 35, 1, 1, 6, 3, 4, 3, 10, 1
Offset: 0

Views

Author

Clark Kimberling, May 04 2011

Keywords

Comments

See A189964 and A188635.

Crossrefs

Cf. A189964 (decimal expansion), A188635.

Programs

  • Magma
    ContinuedFraction( (3 + Sqrt(13) + Sqrt(38 + 6*Sqrt(13)))/4 ); // G. C. Greubel, Jan 12 2018
  • Maple
    Digits:=100: convert(evalf((3+sqrt(13)+sqrt(38+6*sqrt(13)))/4), confrac); # Wesley Ivan Hurt, Dec 12 2013
  • Mathematica
    (See A189964.)
    ContinuedFraction[(3 + Sqrt[13] + Sqrt[38 + 6 Sqrt[13]])/4, 100] (* Wesley Ivan Hurt, Dec 12 2013 *)
  • PARI
    contfrac((3+sqrt(13)+sqrt(38+sqrt(468)))/4)
    

Extensions

Offset changed by Andrew Howroyd, Aug 09 2024

A189966 Decimal expansion of (3+sqrt(33))/4, which has periodic continued fractions [2,5,2,1,2,5,2,1,...] and [3/2, 1, 3/2, 1, ...].

Original entry on oeis.org

2, 1, 8, 6, 1, 4, 0, 6, 6, 1, 6, 3, 4, 5, 0, 7, 1, 6, 4, 9, 6, 2, 6, 5, 2, 8, 6, 7, 0, 5, 4, 7, 3, 2, 3, 2, 9, 5, 5, 5, 0, 6, 6, 1, 1, 4, 4, 9, 5, 6, 9, 8, 0, 9, 1, 9, 2, 4, 9, 6, 9, 3, 6, 7, 6, 4, 1, 4, 7, 5, 1, 8, 0, 3, 6, 4, 3, 5, 1, 1, 5, 6, 7, 5, 6, 7, 8, 1, 3, 4, 1, 3, 9, 9, 1, 9, 7, 0, 3, 0, 6, 0, 4, 8, 8, 9, 3, 6, 9, 2, 3, 6, 4, 1, 2, 7, 0, 9, 4, 6
Offset: 1

Views

Author

Clark Kimberling, May 05 2011

Keywords

Comments

Let R denote a rectangle whose shape (i.e., length/width) is (3+sqrt(33))/4. This rectangle can be partitioned into squares in a manner that matches the continued fraction [2,5,2,1,2,5,2,1,2,5,2,1,...]. It can also be partitioned into rectangles of shape 3/2 and 3 so as to match the continued fraction [3/2, 1, 3/2, 1, 3/2, ...]. For details, see A188635.
Apart from the first digit, the same as A188939. - R. J. Mathar, May 16 2011

Examples

			2.18614066163450716496265286705473232955506611449...
		

Crossrefs

Programs

  • Magma
    (3+Sqrt(33))/4 // G. C. Greubel, Jan 12 2018
  • Mathematica
    FromContinuedFraction[{3/2, 1, {3/2, 1}}]
    ContinuedFraction[%, 25]  (* [2,5,2,1,2,5,2,1,...] *)
    RealDigits[N[%%, 120]]  (* A189966 *)
    N[%%%, 40]
  • PARI
    (3+sqrt(33))/4 \\ G. C. Greubel, Jan 12 2018
    

A189967 Decimal expansion of (7+sqrt(105))/4, which has periodic continued fractions [4,3,4,1,4,3,4,1...] and [7/2, 1, 7/2, 1, ...].

Original entry on oeis.org

4, 3, 1, 1, 7, 3, 7, 6, 9, 1, 4, 8, 9, 8, 9, 9, 5, 9, 5, 8, 0, 5, 2, 5, 9, 6, 7, 0, 1, 3, 0, 2, 6, 2, 9, 9, 7, 6, 8, 3, 7, 5, 8, 1, 6, 5, 8, 6, 3, 7, 0, 8, 2, 3, 2, 3, 8, 5, 4, 9, 4, 6, 2, 4, 9, 7, 2, 5, 8, 6, 9, 9, 6, 4, 2, 6, 3, 3, 8, 5, 1, 8, 2, 3, 1, 8, 0, 7, 9, 0, 7, 0, 9, 4, 6, 3, 6, 6, 8, 4, 2, 3, 8, 6, 1, 4, 7, 5, 0, 8, 1, 5, 7, 6, 3, 1, 7, 3, 0, 7
Offset: 1

Views

Author

Clark Kimberling, May 05 2011

Keywords

Comments

Let R denote a rectangle whose shape (i.e., length/width) is (7+sqrt(105))/4. This rectangle can be partitioned into squares in a manner that matches the continued fraction [4,3,4,1,4,3,4,1...]. It can also be partitioned into rectangles of shape 3/2 and 3 so as to match the continued fraction [7/2, 1, 7/2, 1, ...]. For details, see A188635.

Examples

			4.311737691489899595805259670130262997684...
		

Crossrefs

Programs

  • Magma
    (7+Sqrt(105))/4 // G. C. Greubel, Jan 12 2018
  • Mathematica
    FromContinuedFraction[{7/2, 1, {7/2, 1}}]
    ContinuedFraction[%, 25]  (* [4,3,4,1,4,3,4,1...] *)
    RealDigits[N[%%, 120]]  (* A189968 *)
    N[%%%, 40]
  • PARI
    (7+sqrt(105))/4 \\ G. C. Greubel, Jan 12 2018
    

A189968 Decimal expansion of (5+sqrt(85))/6, which has periodic continued fractions [2,2,1,2,2,1,...] and [5/2, 1, 5/2, 1, ...].

Original entry on oeis.org

2, 3, 6, 9, 9, 2, 4, 0, 7, 6, 2, 1, 5, 4, 8, 1, 2, 1, 8, 3, 3, 3, 7, 1, 2, 3, 8, 0, 2, 9, 3, 7, 9, 8, 8, 5, 9, 5, 4, 1, 1, 3, 4, 1, 7, 4, 7, 8, 7, 0, 7, 7, 3, 3, 4, 6, 6, 7, 9, 5, 8, 7, 0, 0, 9, 0, 7, 1, 1, 1, 8, 3, 7, 8, 0, 0, 3, 1, 2, 5, 7, 6, 7, 9, 4, 6, 4, 9, 0, 1, 5, 1, 3, 2, 2, 1, 3, 4, 2, 7, 4, 9, 0, 0, 5, 6, 6, 3, 4, 8, 1, 3, 1, 4, 5, 2, 8, 0, 6, 9
Offset: 1

Views

Author

Clark Kimberling, May 05 2011

Keywords

Comments

Let R denote a rectangle whose shape (i.e., length/width) is (5+sqrt(85))/6. This rectangle can be partitioned into squares in a manner that matches the continued fraction [2,2,1,2,2,1,...]. It can also be partitioned into rectangles of shape 3/2 and 3 so as to match the continued fraction [5/2, 1, 5/2, 1, ...]. For details, see A188635.

Examples

			2.369924076215481218333712380293798859541...
		

Crossrefs

Programs

  • Magma
    (5+Sqrt(85))/6 // G. C. Greubel, Jan 12 2018
  • Mathematica
    FromContinuedFraction[{5/2, 1, {5/2, 1}}]
    ContinuedFraction[%, 25]  (* [2,2,1,2,2,1,...] *)
    RealDigits[N[%%, 120]]  (* A189967 *)
    N[%%%, 40]
    RealDigits[(5+Sqrt[85])/6,10,120][[1]] (* Harvey P. Dale, Apr 18 2014 *)
  • PARI
    (5+sqrt(85))/6 \\ G. C. Greubel, Jan 12 2018
    

A190182 Decimal expansion of (1+x+sqrt(8+2x))/4, where x=sqrt(15).

Original entry on oeis.org

2, 2, 1, 0, 2, 7, 5, 5, 3, 2, 8, 1, 9, 0, 2, 0, 9, 6, 8, 7, 7, 8, 9, 7, 1, 3, 5, 2, 5, 0, 4, 8, 8, 7, 0, 5, 3, 3, 0, 4, 0, 8, 6, 3, 2, 9, 6, 7, 8, 3, 7, 4, 2, 9, 4, 7, 2, 8, 5, 6, 9, 4, 9, 7, 7, 4, 3, 9, 8, 4, 2, 5, 8, 6, 2, 0, 8, 9, 5, 9, 9, 2, 5, 0, 3, 7, 1, 1, 9, 9, 2, 9, 9, 8, 6, 7, 6, 0, 9, 2, 1, 4, 0, 3, 5, 9, 1, 3, 1, 1, 0, 6, 7, 8, 2, 5, 3, 3, 3, 8
Offset: 1

Views

Author

Clark Kimberling, May 05 2011

Keywords

Comments

The rectangle R whose shape (i.e., length/width) is (1+x+sqrt(8+2x))/4, where x=sqrt(15), can be partitioned into golden rectangles and squares in a manner that matches the periodic continued fraction [r,1,1,r,1,1,...]. It can also be partitioned into squares so as to match the nonperiodic continued fraction [2,4,1,3,10,...] at A190183. For details, see A188635.

Examples

			2.210275532819020968778971352504887053304...
		

Crossrefs

Programs

  • Magma
    [(1 + Sqrt(15) + Sqrt(8 + 2*Sqrt(15)))/4]; // G. C. Greubel, Dec 28 2017
  • Mathematica
    r = (1 + 5^(1/2))/2;
    FromContinuedFraction[{r, 1, 1, {r, 1, 1}}]
    FullSimplify[%]
    ContinuedFraction[%, 100] (*A190183*)
    RealDigits[N[%%, 120]]    (*A190182*)
    N[%%%, 40]
    RealDigits[(1 + Sqrt[15] + Sqrt[8 + 2*Sqrt[15]])/4, 10, 100][[1]] (* G. C. Greubel, Dec 28 2017 *)
  • PARI
    (1 + sqrt(15) + sqrt(8 + 2*sqrt(15)))/4 \\ G. C. Greubel, Dec 28 2017
    

A190183 Continued fraction of (1+x+sqrt(8+2x))/4, where x=sqrt(15).

Original entry on oeis.org

2, 4, 1, 3, 10, 1, 3, 1, 1, 2, 66, 1, 4, 2, 1, 1, 48, 5, 1, 1, 2, 1, 1, 1, 8, 2, 1, 1, 4, 16, 2, 2, 1, 4, 1, 3, 1, 3, 1, 11, 1, 1, 8, 16, 1, 1, 1, 10, 1, 2, 4, 1, 1, 1, 3, 1, 1, 1, 1, 30, 1, 1, 2, 1, 1, 8, 13, 1, 1, 6, 6, 1, 6, 1, 1, 2, 2, 10, 1, 2, 7, 9, 2, 4, 7, 3, 1, 2, 2, 1, 2, 5, 4, 2, 3, 2, 3, 2, 1, 3
Offset: 1

Views

Author

Clark Kimberling, May 05 2011

Keywords

Comments

Equivalent to the periodic continued fraction [r,1,1,r,1,1,...] where r=(1+sqrt(5))/2, the golden ratio. For geometric interpretations of both continued fractions, see A190182 and A188635.

Crossrefs

Programs

  • Magma
    ContinuedFraction((1+Sqrt(15)+Sqrt(8+2*Sqrt(15)))/4); // G. C. Greubel, Dec 28 2017
  • Mathematica
    r = (1 + 5^(1/2))/2;
    FromContinuedFraction[{r, 1, 1, {r, 1, 1}}]
    FullSimplify[%]
    ContinuedFraction[%, 100] (* A190183 *)
    RealDigits[N[%%, 120]]    (* A190182 *)
    N[%%%, 40]
    ContinuedFraction[(1+Sqrt[15]+Sqrt[8+2Sqrt[15]])/4,100] (* Harvey P. Dale, Apr 29 2013 *)
  • PARI
    contfrac((1+sqrt(15)+sqrt(8+2*sqrt(15)))/4) \\ G. C. Greubel, Dec 28 2017
    

A190256 Decimal expansion of sqrt((3 + x + sqrt(9+6x))/2), where x=sqrt(6).

Original entry on oeis.org

2, 2, 7, 1, 2, 8, 1, 5, 6, 2, 4, 2, 2, 9, 9, 4, 1, 4, 2, 3, 1, 3, 0, 5, 8, 0, 6, 8, 7, 5, 9, 7, 2, 6, 8, 5, 5, 4, 5, 5, 8, 4, 9, 2, 6, 9, 1, 0, 2, 1, 4, 3, 4, 3, 2, 8, 7, 4, 9, 0, 8, 2, 8, 2, 6, 5, 9, 1, 6, 4, 3, 9, 1, 5, 4, 3, 9, 2, 2, 1, 2, 3, 6, 1, 6, 7, 1, 5, 1, 8, 5, 5, 1, 0, 2, 9, 6, 0, 3, 1, 3, 7, 3, 1, 9, 7, 0, 3, 3, 5, 9, 4, 8, 5, 3, 0, 0, 5, 2, 6
Offset: 1

Views

Author

Clark Kimberling, May 06 2011

Keywords

Comments

The rectangle R whose shape (i.e., length/width) is sqrt(3+x+sqrt(9+6x)), where x=sqrt(6), can be partitioned into rectangles of shapes sqrt(3) and sqrt(2) in a manner that matches the periodic continued fraction [sqrt(3), sqrt(2), sqrt(3), sqrt(2), ...]. R can also be partitioned into squares so as to match the nonperiodic continued fraction [2,3,1,2,5,2,1,5,95,1,...] at A190257. For details, see A188635.

Examples

			2.271281562422994142313058068759726855455...
		

Crossrefs

Programs

  • Magma
    [Sqrt((3+Sqrt(6)+Sqrt(9+6*Sqrt(6)))/2)]; // G. C. Greubel, Dec 26 2017
  • Mathematica
    FromContinuedFraction[{3^(1/2), 2^(1/2), {3^(1/2), 2^(1/2)}}]
    FullSimplify[%]
    ContinuedFraction[%, 100]  (* A190256 *)
    RealDigits[N[%%, 120]]     (* A190257 *)
    N[%%%, 40]
  • PARI
    sqrt((3+sqrt(6)+sqrt(9+6*sqrt(6)))/2) \\ G. C. Greubel, Dec 26 2017
    

Extensions

Name corrected by T. D. Noe, Feb 25 2013

A190263 Continued fraction of (3 + sqrt(9 + 12*sqrt(3)))/6.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 2, 1, 1, 1, 1, 8, 2, 17, 2, 3, 10, 2, 23, 1, 4, 1, 2, 1, 4, 1, 2, 35, 4, 1, 1, 1, 2, 5, 4, 1, 1, 3, 17, 3, 2, 1, 3, 1, 3, 1, 1, 10, 3, 1, 13, 1, 1, 1, 4, 1, 2, 2, 2, 1, 2, 15, 3, 2, 5, 6, 2, 1, 15, 132, 4, 2, 1, 1, 19, 1, 4, 1, 2, 5, 2, 16, 2, 1, 15, 5, 2, 10, 13, 1, 1
Offset: 1

Views

Author

Clark Kimberling, May 06 2011

Keywords

Comments

Equivalent to the periodic continued fraction [1, x, 1, x,...], where x=sqrt(3). (See A188635.)

Crossrefs

Programs

  • Magma
    ContinuedFraction((3 + sqrt(9 + 12*sqrt(3)))/6); // G. C. Greubel, Dec 28 2017
  • Mathematica
    r=3^(1/2)
    FromContinuedFraction[{1, r, {1, r}}]
    FullSimplify[%]
    ContinuedFraction[%, 100]  (* A190263 *)
    RealDigits[N[%%, 120]]     (* A190262 *)
    N[%%%, 40]
    ContinuedFraction[(3 + Sqrt[9 + 12*Sqrt[3]])/6, 100] (* G. C. Greubel, Dec 26 2017 *)
  • PARI
    contfrac((3+sqrt(9+sqrt(432)))/6) \\ Charles R Greathouse IV, Jul 29 2011
    

A190285 Decimal expansion of (3+sqrt(9+4r))/2, where r=sqrt(3).

Original entry on oeis.org

3, 4, 9, 5, 5, 0, 7, 6, 5, 6, 6, 0, 4, 9, 2, 4, 5, 0, 3, 7, 7, 2, 8, 6, 6, 6, 7, 9, 0, 5, 4, 4, 8, 1, 0, 0, 5, 1, 8, 8, 6, 1, 0, 8, 8, 4, 0, 4, 7, 7, 3, 2, 4, 5, 3, 1, 4, 2, 1, 1, 4, 5, 0, 6, 9, 7, 2, 1, 5, 2, 8, 1, 4, 6, 2, 1, 9, 5, 7, 6, 9, 3, 6, 8, 9, 3, 0, 5, 8, 5, 3, 9, 9, 3, 9, 4, 4, 9, 0, 9, 1, 2, 9, 6, 6, 7, 2, 8, 9, 9, 6, 0, 0, 8, 6, 3, 6, 9, 8, 1
Offset: 1

Views

Author

Clark Kimberling, May 07 2011

Keywords

Comments

The rectangle R whose shape (i.e., length/width) is (3+sqrt(9+4r))/2, where r=sqrt(3), can be partitioned into rectangles of shapes 3 and r in a manner that matches the periodic continued fraction [3, r, 3, r, ...]. R can also be partitioned into squares so as to match the nonperiodic continued fraction [3,2,55,6,1,1,1,9,1,1,1,7,2,...] at A190286. For details, see A188635.

Examples

			3.495507656604924503772866679054481005189...
		

Crossrefs

Programs

  • Mathematica
    r=3^(1/2)
    FromContinuedFraction[{3, r, {3, r}}]
    FullSimplify[%]
    ContinuedFraction[%, 100]  (* A190286 *)
    RealDigits[N[%%, 120]]     (* A190285 *)
    N[%%%, 40]
    RealDigits[(3+Sqrt[9+4Sqrt[3]])/2,10,120][[1]] (* Harvey P. Dale, Oct 19 2021 *)

A190287 Decimal expansion of (5+sqrt(25+4r))/2, where r=sqrt(5).

Original entry on oeis.org

5, 4, 1, 3, 0, 8, 5, 6, 4, 5, 4, 1, 1, 0, 2, 8, 7, 1, 0, 2, 8, 7, 0, 6, 5, 5, 6, 7, 5, 5, 7, 4, 9, 4, 1, 3, 5, 3, 1, 5, 9, 3, 2, 7, 3, 6, 5, 0, 4, 1, 2, 5, 8, 4, 1, 5, 5, 0, 5, 1, 3, 3, 7, 5, 9, 2, 2, 6, 7, 7, 4, 4, 9, 2, 3, 3, 0, 9, 7, 1, 9, 2, 2, 5, 1, 8, 4, 8, 8, 1, 5, 1, 0, 0, 2, 8, 8, 0, 8, 8, 7, 4, 0, 9, 0, 0, 2, 2, 3, 2, 0, 9, 6, 8, 1, 4, 0, 4, 0, 2
Offset: 1

Views

Author

Clark Kimberling, May 07 2011

Keywords

Comments

The rectangle R whose shape (i.e., length/width) is (5+sqrt(25+4r))/2, where r=sqrt(5), can be partitioned into rectangles of shapes 5 and r in a manner that matches the periodic continued fraction [5, r, 5, r, ...]. R can also be partitioned into squares so as to match the nonperiodic continued fraction [5,2,2,2,1,1,1,10,1,1,2,1,...] at A190288. For details, see A188635.

Examples

			5.413085645411028710287065567557494135316...
		

Crossrefs

Programs

  • Mathematica
    r=5^(1/2)
    FromContinuedFraction[{5, r, {5, r}}]
    FullSimplify[%]
    ContinuedFraction[%, 100]  (* A190288 *)
    RealDigits[N[%%, 120]]     (* A190287 *)
    N[%%%, 40]
Previous Showing 31-40 of 48 results. Next