cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 74 results. Next

A072587 Numbers having at least one prime factor with an even exponent.

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 25, 28, 36, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 90, 92, 98, 99, 100, 108, 112, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 180, 188, 192, 196, 198, 200, 204
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2002

Keywords

Comments

Complement of the union of {1} and A002035. [Correction, Nov 15 2012]
A162645 is a subsequence and this sequence is a subsequence of A162643. - Reinhard Zumkeller, Jul 08 2009
The asymptotic density of this sequence is 1 - A065463 = 0.2955577990... - Amiram Eldar, Jul 21 2020
A number k is a term iff its core (A007913) properly divides its kernel (A007947), that is iff A336643(k) > 1. - David James Sycamore, Sep 18 2023

Crossrefs

Programs

  • Haskell
    a072587 n = a072587_list !! (n-1)
    a072587_list = tail $ filter (any even . a124010_row) [1..]
    -- Reinhard Zumkeller, Nov 15 2012
    
  • Mathematica
    Select[Range[210], MemberQ[EvenQ[Transpose[FactorInteger[#]][[2]]], True] &] (* Harvey P. Dale, Apr 03 2012 *)
  • PARI
    is(n)=n>3 && Set(factor(n)[,2]%2)[1]==0 \\ Charles R Greathouse IV, Oct 16 2015
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A072587_gen(startvalue=1): # generator of terms
        return filter(lambda n:not all(map(lambda m:m&1,factorint(n).values())),count(max(startvalue,1)))
    A072587_list = list(islice(A072587_gen(),30)) # Chai Wah Wu, Jan 04 2023

Extensions

Thanks to Zak Seidov, who noticed that 1 had to be removed. - Reinhard Zumkeller, Nov 15 2012

A348271 a(n) is the sum of noninfinitary divisors of n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 8, 0, 0, 0, 14, 0, 9, 0, 12, 0, 0, 0, 0, 5, 0, 0, 16, 0, 0, 0, 12, 0, 0, 0, 41, 0, 0, 0, 0, 0, 0, 0, 24, 18, 0, 0, 56, 7, 15, 0, 28, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 24, 42, 0, 0, 0, 36, 0, 0, 0, 45, 0, 0, 20, 40, 0, 0, 0, 84, 39
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2021

Keywords

Examples

			a(12) = 8 since 12 has 2 noninfinitary divisors, 2 and 6, and 2 + 6 = 8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; a[n_]:= DivisorSigma[1,n] - isigma[n]; Array[a, 100]

Formula

a(n) = A000203(n) - A049417(n).
a(n) = 0 if and only if the number of divisors of n is a power of 2, (i.e., n is in A036537).
a(n) > 0 if and only if the number of divisors of n is not a power of 2, (i.e., n is in A162643).

A286325 Bi-unitary harmonic numbers.

Original entry on oeis.org

1, 6, 45, 60, 90, 270, 420, 630, 672, 2970, 5460, 8190, 9072, 9100, 10080, 15925, 22680, 22848, 27300, 30240, 40950, 45360, 54600, 81900, 95550, 99792, 136500, 163800, 172900, 204750, 208656, 245700, 249480, 312480, 332640, 342720, 385560, 409500, 472500, 491400
Offset: 1

Views

Author

Michel Marcus, May 07 2017

Keywords

Comments

A number m is a term if the sum of its bi-unitary divisors, A188999(m) divides the product of m by the number of its bi-unitary divisors A286324(m).
Numbers k whose harmonic mean of their bi-unitary divisors, A361782(k)/A361783(k), is an integer. - Amiram Eldar, Mar 24 2023

Crossrefs

Cf. A001599 (Ore harmonic), A006086 (unitary harmonic).

Programs

  • Mathematica
    f[p_, e_] := p^e * If[OddQ[e], (e + 1)*(p - 1)/(p^(e + 1) - 1), e/((p^(e + 1) - 1)/(p - 1) - p^(e/2))]; bhQ[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; bhQ[1] = True; Select[Range[10^5], bhQ] (* Amiram Eldar, Mar 24 2023 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    biudivs(n) = select(x->(gcud(x, n/x)==1), divisors(n));
    isok(n) = my(v=biudivs(n)); denominator(n*#v/vecsum(v))==1;

A292980 Smaller of bi-unitary amicable pair.

Original entry on oeis.org

114, 594, 1140, 3608, 4698, 5940, 6232, 7704, 9520, 10744, 12285, 13500, 41360, 44772, 46980, 60858, 62100, 67095, 67158, 73360, 79650, 79750, 105976, 118500, 141664, 142310, 177750, 185368, 193392, 217840, 241024, 298188, 308220, 308992, 356408, 399200
Offset: 1

Views

Author

Amiram Eldar, Sep 27 2017

Keywords

Comments

Analogous to amicable numbers with bi-unitary sigma (A188999) instead of sigma (A000203).
Hagis found all the bi-unitary amicable pairs with smaller members below 10^6.
The larger members are in A292981.

Examples

			3608 is in the sequence since A188999(3608) - 3608 = 3952 and A188999(3952) - 3952 = 3608.
		

Crossrefs

Programs

  • Mathematica
    fun[p_,e_]:=If[Mod[e,2]==1,(p^(e+1)-1)/(p-1),(p^(e+1)-1)/(p-1)-p^(e/2)];
    bsigma[n_] := If[n==1,1,Times @@ (fun @@@ FactorInteger[n])]; Do[s = bsigma[n]; If[s > 2 n && bsigma[s - n] == s, Print[n]],{n,1,10000}] (* Amiram Eldar, Sep 29 2018 *)

A292981 Larger of bi-unitary amicable pair.

Original entry on oeis.org

126, 846, 1260, 3952, 5382, 8460, 6368, 8496, 13808, 10856, 14595, 17700, 51952, 49308, 53820, 83142, 62700, 71145, 73962, 97712, 107550, 88730, 108224, 131100, 153176, 168730, 196650, 203432, 195408, 287600, 309776, 306612, 365700, 332528, 399592, 419800
Offset: 1

Views

Author

Amiram Eldar, Sep 27 2017

Keywords

Comments

Analogous to amicable numbers with bi-unitary sigma (A188999) instead of sigma (A000203).
Hagis found all the bi-unitary amicable pairs with smaller members below 10^6.
The smaller members are in A292980.
The terms are ordered according to their lesser counterparts.

Examples

			3952 is in the sequence since A188999(3608) - 3608 = 3952 and A188999(3952) - 3952 = 3608.
		

Crossrefs

Programs

  • Mathematica
    fun[p_,e_]:=If[Mod[e,2]==1,(p^(e+1)-1)/(p-1),(p^(e+1)-1)/(p-1)-p^(e/2)];
    bsigma[n_] := If[n==1,1,Times @@ (fun @@@ FactorInteger[n])]; Do[s = bsigma[n]; If[s > 2 n && bsigma[s - n] == s, Print[s-n]],{n,1,10000}] (* Amiram Eldar, Sep 29 2018 *)

A318167 Numbers k such that both k and k+1 are bi-unitary abundant numbers.

Original entry on oeis.org

21735, 21944, 43064, 49664, 58695, 76544, 106784, 135135, 144584, 160544, 188055, 209055, 227744, 256095, 262184, 300104, 345344, 348704, 382304, 387584, 407295, 409184, 414855, 437535, 498015, 520695, 560384, 567944, 611415, 679455, 687015, 705375, 709695
Offset: 1

Views

Author

Amiram Eldar, Aug 20 2018

Keywords

Comments

The bi-unitary version of A096399.

Examples

			21735 is in the sequence since both 21735 and 21736 are bi-unitary abundant numbers.
		

Crossrefs

Cf. A096399 (analog for sigma), A188999 (bi-unitary sigma).
Cf. A292982 (bi-unitary abundant), A293186 (odd bi-unitary abundant).

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; bAbundantQ[n_] := bsigma[n] > 2 n; seq={}; n=1; While[Length[seq]<32,If[bAbundantQ[n] && bAbundantQ [n+1],AppendTo[seq,n]];n++];seq
  • PARI
    a188999(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f); }
    isok(n) = (a188999(n) > 2*n) && (a188999(n+1) > 2*(n+1)); \\ Michel Marcus, Aug 21 2018

A292986 Bi-unitary weird numbers: bi-unitary abundant numbers (A292982) that are not bi-unitary pseudoperfect (A292985).

Original entry on oeis.org

70, 4030, 5390, 5830, 7192, 7400, 7912, 9272, 10430, 10570, 10792, 10990, 11410, 11690, 11830, 12110, 12530, 12670, 13370, 13510, 13790, 13930, 14770, 15610, 15890, 16030, 16310, 16730, 16870, 17272, 17570, 17990, 18410, 18830, 18970, 19390, 19670, 19810
Offset: 1

Views

Author

Amiram Eldar, Sep 27 2017

Keywords

Comments

Analogous to weird numbers (A006037) with bi-unitary sigma (A188999) instead of sigma (A000203).

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bdiv[m_] := Select[Divisors[m], Last@Intersection[f@#, f[m/#]] == 1 &]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; bAbundantQ[n_] := bsigma[n] > 2 n; a = {}; n = 0; While[Length[a] < 5, n++; If[!bAbundantQ[n], Continue[]]; d = Most[bdiv[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c <= 0, AppendTo[a, n]]]; a (* after T. D. Noe at A005835 and Michael De Vlieger at A188999 *)

A353900 a(n) is the sum of divisors of n whose exponents in their prime factorizations are all powers of 2 (A138302).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 7, 13, 18, 12, 28, 14, 24, 24, 23, 18, 39, 20, 42, 32, 36, 24, 28, 31, 42, 13, 56, 30, 72, 32, 23, 48, 54, 48, 91, 38, 60, 56, 42, 42, 96, 44, 84, 78, 72, 48, 92, 57, 93, 72, 98, 54, 39, 72, 56, 80, 90, 60, 168, 62, 96, 104, 23, 84, 144
Offset: 1

Views

Author

Amiram Eldar, May 10 2022

Keywords

Crossrefs

Similar sequences: A034448, A048146, A051377, A188999.

Programs

  • Mathematica
    f[p_, e_] := 1 + Sum[p^(2^k), {k, 0, Floor[Log2[e]]}]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + sum(k = 0, logint(f[i,2], 2), f[i,1]^(2^k)));} \\ Amiram Eldar, Nov 19 2022

Formula

Multiplicative with a(p^e) = 1 + Sum_{k=0..floor(log_2(e))} p^(2^k).
a(n) = A000203(n) if and only if n is cubefree (A004709).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((1-1/p)*(1 + Sum_{k>=1} (Sum_{j=0..floor(log_2(k))} p^(2^j)/p^(2*k)))) = 0.7176001667... . - Amiram Eldar, Nov 19 2022

A292985 Bi-unitary pseudoperfect numbers: numbers that are equal to the sum of a subset of their aliquot bi-unitary divisors.

Original entry on oeis.org

6, 24, 30, 40, 42, 48, 54, 56, 60, 66, 72, 78, 80, 88, 90, 96, 102, 104, 114, 120, 138, 150, 160, 162, 168, 174, 186, 192, 210, 216, 222, 224, 240, 246, 258, 264, 270, 280, 282, 288, 294, 312, 318, 320, 330, 336, 352, 354, 360, 366, 378, 384, 390, 402, 408
Offset: 1

Views

Author

Amiram Eldar, Sep 27 2017

Keywords

Comments

Analogous to pseudoperfect numbers (A005835) with bi-unitary sigma (A188999) instead of sigma (A000203).

Examples

			48 is in the sequence since its bi-unitary divisors are 1, 2, 3, 6, 8, 16, 24, 48 and 48 = 8 + 16 + 24.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bdiv[m_] := Select[Divisors[m], Last@Intersection[f@#, f[m/#]] == 1 &]; a = {}; n = 0; While[n < 1000, n++; d = Most[bdiv[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[a, n]]];a (* after T. D. Noe at A005835 and Michael De Vlieger at A188999 *)

A362852 The number of divisors of n that are both bi-unitary and exponential.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, May 05 2023

Keywords

Comments

First differs from A061704 at n = 128, and from A304327 and abs(A307428) at n = 64.
If e > 0 is the exponent of the highest power of p dividing n (where p is a prime), then for each divisor d of n that is both a bi-unitary and an exponential divisor, the exponent of the highest power of p dividing d is a number k such that k | e but k != e/2.
The least term that is higher than 2 is a(64) = 3.
This sequence is unbounded. E.g., a(2^(2^prime(n))) = prime(n).

Examples

			a(8) = 2 since 8 has 2 divisors that are both bi-unitary and exponential: 2 and 8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSigma[0, e] - If[OddQ[e], 0, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, numdiv(f[i, 2]) - !(f[i, 2] % 2));}

Formula

Multiplicative with a(p^e) = d(e) if e is odd, and d(e)-1 if e is even, where d(k) is the number of divisors of k (A000005).
a(n) = 1 if and only if n is cubefree (A004709).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=1} (d(k)+(k mod 2)-1)/p^k) = 1.1951330849... .
Previous Showing 31-40 of 74 results. Next