A084280
Number of labeled 4-colorable (i.e., chromatic number <= 4) graphs on n nodes.
Original entry on oeis.org
1, 2, 8, 64, 1023, 32596, 2062592, 257798069, 63135260853, 29939766625614, 27055039857514327
Offset: 1
- S. R. Finch, Bipartite, k-colorable and k-colored graphs
- S. R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- F. Hüffner, tinygraph, software for generating integer sequences based on graph properties, version 8c665c7
- Eric Weisstein's World of Mathematics, n-Colorable Graph
a(7)-a(11) added using tinygraph by
Falk Hüffner, Jun 20 2018
A000685
Number of 3-colored labeled graphs on n nodes, divided by 3.
Original entry on oeis.org
1, 5, 41, 545, 11681, 402305, 22207361, 1961396225, 276825510401, 62368881977345, 22413909724518401, 12840603873823473665, 11720394922432296755201, 17037597932370037286600705
Offset: 1
- R. C. Read, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..50
- S. R. Finch, Bipartite, k-colorable and k-colored graphs (3*A000685)
- S. R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- R. C. Read, Letter to N. J. A. Sloane, Oct. 29, 1976
- R. P. Stanley, Acyclic orientation of graphs Discrete Math. 5 (1973), 171-178. North Holland Publishing Company.
- Eric Weisstein's World of Mathematics, k-Colorable Graph
-
c[0]:=1: for n from 1 to 30 do c[n]:=sum(binomial(n,i)*2^(i*(n-i)),i=0..n) od: a:=n->(1/3)*sum(binomial(n,j)*2^(j*(n-j))*c[j],j=0..n): seq(a(n),n=1..19);
-
a[n_] := 1/3*Sum[ 2^((i-j)*j + i*(n-i))*Binomial[n, i]*Binomial[i, j], {i, 0, n}, {j, 0, i}]; Table[ a[n], {n, 1, 14}] (* Jean-François Alcover, Dec 07 2011, after Emeric Deutsch *)
More terms from Pab Ter (pabrlos(AT)yahoo.com) and
Emeric Deutsch, May 05 2004
A000686
Number of 4-colored labeled graphs on n nodes, divided by 4.
Original entry on oeis.org
1, 7, 85, 1777, 63601, 3882817, 403308865, 71139019777, 21276992674561, 10778161937857537, 9238819435213784065, 13390649605615389843457, 32796747486424209782108161, 135669064080920007649863745537, 947468281528010179181982467702785, 11166618111585805201637975219611631617
Offset: 1
- R. C. Read, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. R. Finch, Bipartite, k-colorable and k-colored graphs. (4*{a(n)})
- S. R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- R. C. Read, Letter to N. J. A. Sloane, Oct. 29, 1976.
-
b[n_] := Sum[ 2^((i-j)*j + i*(n-i))*Binomial[n, i]*Binomial[i, j], {i, 0, n}, {j, 0, i}]; a[n_] := 1/4*Sum[ Binomial[n, k]*2^(k*(n-k))*b[k], {k, 0, n}]; Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Dec 07 2011, after Emeric Deutsch *)
-
N=66; x='x+O('x^N);
E=sum(n=0, N, x^n/(n!*2^binomial(n,2)) );
tgf=E^4-1; v=Vec(tgf);
v=vector(#v, n, v[n] * n! * 2^(n*(n-1)/2) ) / 4
/* Joerg Arndt, Apr 10 2013 */
More terms from Pab Ter (pabrlos(AT)yahoo.com) and
Emeric Deutsch, May 05 2004
A002028
Number of connected graphs on n labeled nodes, each node being colored with one of 3 colors, such that no edge joins nodes of the same color.
Original entry on oeis.org
1, 3, 6, 42, 618, 15990, 668526, 43558242, 4373213298, 677307561630, 162826875512646, 61183069270120842, 36134310487980825258, 33673533885068169649830, 49646105434209446798290206, 116002075479856331220877149042, 430053223599741677879550609246498, 2531493110297317758855120762121050990
Offset: 0
- R. C. Read, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
f[{k_, r_, m_}]:= Binomial[m+r+k, k] Binomial[m+r, r] 2^(k r +k m + r m);
a = Sum[Total[Map[f, Compositions[n, 3]]] x^n/n!, {n, 0, 20}];
Range[0, 20]! CoefficientList[Series[Log[a]+1, {x, 0, 20}], x] (* Geoffrey Critzer, Jun 02 2011 *)
-
seq(n)={Vec(serlaplace(1 + log(serconvol(sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n), (sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n))^3))))} \\ Andrew Howroyd, Dec 03 2018
Comments