cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A084280 Number of labeled 4-colorable (i.e., chromatic number <= 4) graphs on n nodes.

Original entry on oeis.org

1, 2, 8, 64, 1023, 32596, 2062592, 257798069, 63135260853, 29939766625614, 27055039857514327
Offset: 1

Views

Author

Eric W. Weisstein, May 25 2003

Keywords

Crossrefs

Extensions

a(7)-a(11) added using tinygraph by Falk Hüffner, Jun 20 2018

A000685 Number of 3-colored labeled graphs on n nodes, divided by 3.

Original entry on oeis.org

1, 5, 41, 545, 11681, 402305, 22207361, 1961396225, 276825510401, 62368881977345, 22413909724518401, 12840603873823473665, 11720394922432296755201, 17037597932370037286600705
Offset: 1

Views

Author

Keywords

Comments

Sequence represents 1/3 of the number of 3-colored labeled graphs on n nodes. Indeed, on p. 413 of the Read paper, column 3 is 3, 15, 123, 1635, ...; or see A047863. - Emeric Deutsch, May 06 2004

References

  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    c[0]:=1: for n from 1 to 30 do c[n]:=sum(binomial(n,i)*2^(i*(n-i)),i=0..n) od: a:=n->(1/3)*sum(binomial(n,j)*2^(j*(n-j))*c[j],j=0..n): seq(a(n),n=1..19);
  • Mathematica
    a[n_] := 1/3*Sum[ 2^((i-j)*j + i*(n-i))*Binomial[n, i]*Binomial[i, j], {i, 0, n}, {j, 0, i}]; Table[ a[n], {n, 1, 14}] (* Jean-François Alcover, Dec 07 2011, after Emeric Deutsch *)

Formula

a(n) = (1/3)Sum_{j=0..n} binomial(n, j)*2^(j(n-j))*c(j) where c(n) = Sum_{i=0..n} binomial(n, i)*2^(i(n-i)) = A047863(n). - Emeric Deutsch, May 06 2004
From Peter Bala, Apr 12 2013: (Start)
a(n) = 1/3*A191371(n). Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is 1/3*E(x)^3 - 1/3 = Sum_{n >= 1} a(n)*x^n/(n!*2^C(n,2)) = x + 5*x^2/(2!*2) + 41*x^3/(3!*2^3) + .... In general, E(x)^k, k = 1, 2, ..., is a generating function for labeled k-colored graphs (see Read). For examples see A047863 (k = 2), A191371 (k = 3) and A223887 (k = 4). (End)

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com) and Emeric Deutsch, May 05 2004

A000686 Number of 4-colored labeled graphs on n nodes, divided by 4.

Original entry on oeis.org

1, 7, 85, 1777, 63601, 3882817, 403308865, 71139019777, 21276992674561, 10778161937857537, 9238819435213784065, 13390649605615389843457, 32796747486424209782108161, 135669064080920007649863745537, 947468281528010179181982467702785, 11166618111585805201637975219611631617
Offset: 1

Views

Author

Keywords

Comments

Sequence represents 1/4 of the number of 4-colored labeled graphs on n nodes. Indeed, on p. 413 of the Read paper, column 4 is 4, 28, 340, 7108, ... - Emeric Deutsch, May 06 2004

References

  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    b[n_] := Sum[ 2^((i-j)*j + i*(n-i))*Binomial[n, i]*Binomial[i, j], {i, 0, n}, {j, 0, i}]; a[n_] := 1/4*Sum[ Binomial[n, k]*2^(k*(n-k))*b[k], {k, 0, n}]; Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Dec 07 2011, after Emeric Deutsch *)
  • PARI
    N=66;  x='x+O('x^N);
    E=sum(n=0, N, x^n/(n!*2^binomial(n,2)) );
    tgf=E^4-1;  v=Vec(tgf);
    v=vector(#v, n, v[n] * n! * 2^(n*(n-1)/2) ) / 4
    /* Joerg Arndt, Apr 10 2013 */

Formula

a(n) = (1/4)*Sum_{k=0..n} binomial(n, k)*2^(k(n-k))*b(k), where b(0)=1 and b(k) = 3*A000685(k) for k > 0. - Emeric Deutsch, May 06 2004
From Peter Bala, Apr 12 2013: (Start)
a(n) = (1/4)*A223887(n).
a(n) = (1/4)*Sum_{k = 0..n} binomial(n,k)*2^(k*(n-k))*b(k)*b(n-k), where b(n) := Sum_{k = 0..n} binomial(n,k)*2^(k*(n-k)).
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence is (1/4)*(E(x)^4 - 1) = Sum_{n >= 0} a(n)*x^n/(n!*2^C(n,2)) = x + 7*x^2/(2!*2) + 85*x^3/(3!*2^3) + .... (End)

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com) and Emeric Deutsch, May 05 2004

A002028 Number of connected graphs on n labeled nodes, each node being colored with one of 3 colors, such that no edge joins nodes of the same color.

Original entry on oeis.org

1, 3, 6, 42, 618, 15990, 668526, 43558242, 4373213298, 677307561630, 162826875512646, 61183069270120842, 36134310487980825258, 33673533885068169649830, 49646105434209446798290206, 116002075479856331220877149042, 430053223599741677879550609246498, 2531493110297317758855120762121050990
Offset: 0

Views

Author

Keywords

References

  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A322279.

Programs

  • Mathematica
    f[{k_, r_, m_}]:= Binomial[m+r+k, k] Binomial[m+r, r] 2^(k r +k m + r m);
      a = Sum[Total[Map[f, Compositions[n, 3]]] x^n/n!, {n, 0, 20}];
      Range[0, 20]! CoefficientList[Series[Log[a]+1, {x, 0, 20}], x] (* Geoffrey Critzer, Jun 02 2011 *)
  • PARI
    seq(n)={Vec(serlaplace(1 + log(serconvol(sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n), (sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n))^3))))} \\ Andrew Howroyd, Dec 03 2018

Formula

E.g.f.: log(A(x))+1 where A(x) is the e.g.f. for A191371. - Geoffrey Critzer, Jun 02 2011
a(n) = m_n(3) using the functions defined in A002032. - Sean A. Irvine, May 29 2013
Logarithmic transform of A191371. - Andrew Howroyd, Dec 03 2018
Previous Showing 11-14 of 14 results.