A192313
Constant term of the reduction of n-th polynomial at A157751 by x^2->x+1.
Original entry on oeis.org
1, 2, 5, 13, 34, 91, 247, 680, 1893, 5319, 15056, 42867, 122605, 351898, 1012729, 2920521, 8435362, 24392655, 70599403, 204472264
Offset: 1
The first five polynomials at A157751 and their reductions are as follows:
p0(x)=1 -> 1
p1(x)=2+x -> 2+x
p2(x)=4+2x+x^2 -> 5+3x
p3(x)=8+4x+4x^2+x^3 -> 13+10x
p4(x)=16+8x+12x^2+4x^3+x^4 -> 34+31x.
From these, we read
A192313=(1,2,5,13,34,...) and A192314=(0,1,3,19,31,...)
-
q[x_] := x + 1;
p[0, x_] := 1;
p[n_, x_] := (x + 1)*p[n - 1, x] + p[n - 1, -x] /; n > 0 (* A157751 *)
Table[Simplify[p[n, x]], {n, 0, 5}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0, 20}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 20}]
(* A192313 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 20}]
(* A192337 *)
A192373
Constant term in the reduction of the polynomial p(n,x) defined at A162517 and below in Comments.
Original entry on oeis.org
1, 0, 7, 8, 77, 192, 1043, 3472, 15529, 57792, 240655, 934808, 3789653, 14963328, 60048443, 238578976, 953755537, 3798340224, 15162325975, 60438310184, 241126038941, 961476161856, 3835121918243, 15294304429744, 61000836720313, 243280700771904
Offset: 1
The first five polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=2x -> 2x
p(2,x)=4+x+3x^2 -> 7+4x
p(3,x)=16x+4x^2+4x^3 -> 8+28x
p(4,x)=16+8x+41x^2+10x^3+5x^4 -> 77+84x.
From these, read A192352=(1,0,7,8,77,...) and A049602=(0,2,4,28,84,...).
-
q[x_] := x + 1; d = Sqrt[x + 4];
p[n_, x_] := ((x + d)^n - (x - d)^n )/(2 d) (* A162517 *)
Table[Expand[p[n, x]], {n, 1, 6}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 1, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192373 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192374 *)
Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] (* A192375 *)
A192374
Coefficient of x in the reduction of the polynomial p(n,x) defined at A162517 and below in Comments.
Original entry on oeis.org
0, 2, 4, 28, 84, 406, 1448, 6200, 23688, 97034, 380716, 1533844, 6079452, 24339742, 96844496, 386805104, 1541301648, 6150529682, 24521644756, 97819530508, 390080615652, 1555871900710, 6204937972088, 24747735482792, 98698893741336
Offset: 1
A192376
Constant term of the reduction by x^2->x+2 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
1, 0, 7, 16, 73, 256, 975, 3616, 13521, 50432, 188247, 702512, 2621849, 9784832, 36517535, 136285248, 508623521, 1898208768, 7084211623, 26438637648, 98670339049, 368242718464, 1374300534895, 5128959421024, 19141537149297, 71437189176064
Offset: 1
The first five polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=2x -> 2x
p(2,x)=4+x+3x^2 -> 7+4x
p(3,x)=16x+4x^2+4x^3 -> 16+20x
p(4,x)=16+8x+41x^2+10x^3+5x^4 -> 73+68x.
From these, read A192376=(1,0,7,16,73,...) and A192377=(0,2,4,20,68,...).
-
q[x_] := x + 2; d = Sqrt[x + 1];
p[n_, x_] := ((x + d)^n - (x - d)^ n )/(2 d) (* Cf. A162517 *)
Table[Expand[p[n, x]], {n, 1, 6}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 1, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192376 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192377 *)
Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] (* A192378 *)
A192377
Coefficient of x in the reduction by x^2->x+2 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
0, 2, 4, 20, 68, 262, 968, 3624, 13512, 50442, 188236, 702524, 2621836, 9784846, 36517520, 136285264, 508623504, 1898208786, 7084211604, 26438637668, 98670339028, 368242718486, 1374300534872, 5128959421048, 19141537149272, 71437189176090
Offset: 1
The first five polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=2x -> 2x
p(2,x)=4+x+3x^2 -> 7+4x
p(3,x)=16x+4x^2+4x^3 -> 16+20x
p(4,x)=16+8x+41x^2+10x^3+5x^4 -> 73+68x.
From these, read (0,2,4,20,68,...)
A192379
Constant term of the reduction by x^2->x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
1, 0, 5, 8, 45, 128, 505, 1680, 6089, 21120, 74909, 262680, 926485, 3258112, 11474865, 40382752, 142171985, 500432640, 1761656821, 6201182760, 21829269181, 76841888640, 270495370025, 952182350768, 3351823875225, 11798909226368
Offset: 1
The first five polynomials p(n,x) and their reductions are as follows:
p(0,x)=1 -> 1
p(1,x)=2x -> 2x
p(2,x)=2+x+3x^2 -> 5+4x
p(3,x)=8x+4x^2+4x^3 -> 8+20x
p(4,x)=4+4x+21x^2+10x^3+5x^4 -> 45+60x.
From these, read A192379=(1,0,5,8,45,...) and A192380=(0,2,4,20,60,...).
-
q[x_] := x + 1; d = Sqrt[x + 2];
p[n_, x_] := ((x + d)^n - (x - d)^n )/(2 d) (* Cf. A162517 *)
Table[Expand[p[n, x]], {n, 1, 6}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[Last[Most[FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 1, 30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192379 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192380 *)
Table[Coefficient[Part[t, n]/2, x, 1], {n, 1, 30}] (* A192381 *)
A192383
Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
1, 0, 6, 8, 60, 160, 744, 2496, 10064, 36480, 140512, 522624, 1983168, 7439360, 28091520, 105674752, 398391552, 1500057600, 5652182528, 21288560640, 80200784896, 302101094400, 1138045495296, 4286942363648, 16149041172480, 60833034895360
Offset: 1
The first five polynomials p(n,x) and their reductions are as follows:
p(0, x) = 1 -> 1
p(1, x) = 2*x -> 2*x
p(2, x) = 3 + x + 3*x^2 -> 6 + 4*x
p(3, x) = 12*x + 4*x^2 + 4*x^3 -> 8 + 24*x
p(4, x) = 9 + 6*x + 31*x^2 + 10*x^3 + 5*x^4 -> 60 + 72*x.
From these, read A192383 = (1, 0, 6, 8, 60, ...) and A192384 = (0, 2, 4, 24, 72, ...).
-
R:=PowerSeriesRing(Integers(), 41);
Coefficients(R!( x*(1-2*x-2*x^2)/(1-2*x-8*x^2+4*x^3+4*x^4) )) // G. C. Greubel, Jul 10 2023
-
q[x_]:= x+1; d= Sqrt[x+3];
p[n_, x_]:= ((x+d)^n - (x-d)^n)/(2*d); (* suggested by A162517 *)
Table[Expand[p[n, x]], {n,6}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 1, 30}];
Table[Coefficient[Part[t, n], x, 0], {n,30}] (* A192383 *)
Table[Coefficient[Part[t, n], x, 1], {n,30}] (* A192384 *)
Table[Coefficient[Part[t, n]/2, x, 1], {n,30}] (* A192385 *)
LinearRecurrence[{2,8,-4,-4}, {1,0,6,8}, 40] (* G. C. Greubel, Jul 10 2023 *)
-
@CachedFunction
def a(n): # a = A192383
if (n<5): return (0,1,0,6,8)[n]
else: return 2*a(n-1) +8*a(n-2) -4*a(n-3) -4*a(n-4)
[a(n) for n in range(1,41)] # G. C. Greubel, Jul 10 2023
A192384
Coefficient of x in the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
0, 2, 4, 24, 72, 312, 1088, 4288, 15744, 60192, 224832, 851072, 3197056, 12062592, 45398016, 171104256, 644354048, 2427699712, 9144222720, 34448209920, 129761986560, 488821962752, 1841370087424, 6936475090944, 26129575084032
Offset: 1
The first five polynomials p(n,x) and their reductions are as follows:
p(0, x) = 1 -> 1
p(1, x) = 2*x -> 2*x
p(2, x) = 3 + x + 3*x^2 -> 6 + 4*x
p(3, x) = 12*x + 4*x^2 + 4*x^3 -> 8 + 24*x
p(4, x) = 9 + 6*x + 31*x^2 + 10*x^3 + 5*x^4 -> 60 + 72*x.
From these, read A192383 = (1, 0, 6, 8, 60, ...) and A192384 = (0, 2, 4, 24, 72, ...).
-
R:=PowerSeriesRing(Integers(), 41);
[0] cat Coefficients(R!( 2*x^2/(1-2*x-8*x^2+4*x^3+4*x^4) )) // G. C. Greubel, Jul 10 2023
-
(See A192383.)
LinearRecurrence[{2,8,-4,-4}, {0,2,4,24}, 40] (* G. C. Greubel, Jul 10 2023 *)
-
@CachedFunction
def a(n): # a = A192384
if (n<5): return (0,0,2,4,24)[n]
else: return 2*a(n-1) +8*a(n-2) -4*a(n-3) -4*a(n-4)
[a(n) for n in range(1,41)] # G. C. Greubel, Jul 10 2023
Original entry on oeis.org
0, 1, 2, 12, 36, 156, 544, 2144, 7872, 30096, 112416, 425536, 1598528, 6031296, 22699008, 85552128, 322177024, 1213849856, 4572111360, 17224104960, 64880993280, 244410981376, 920685043712, 3468237545472, 13064787542016
Offset: 1
-
R:=PowerSeriesRing(Integers(), 41);
[0] cat Coefficients(R!( x^2/(1-2*x-8*x^2+4*x^3+4*x^4) )); // G. C. Greubel, Jul 10 2023
-
(See A192384.)
LinearRecurrence[{2,8,-4,-4}, {0,1,2,12}, 40] (* G. C. Greubel, Jul 10 2023 *)
-
@CachedFunction
def a(n): # a = A192385
if (n<5): return (0,0,1,2,12)[n]
else: return 2*a(n-1) +8*a(n-2) -4*a(n-3) -4*a(n-4)
[a(n) for n in range(1,41)] # G. C. Greubel, Jul 10 2023
A192386
Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments.
Original entry on oeis.org
1, 0, 8, 8, 96, 224, 1408, 4608, 22784, 86016, 386048, 1548288, 6676480, 27467776, 116490240, 484409344, 2040135680, 8521777152, 35786063872, 149761818624, 628140015616, 2630784909312, 11028578435072, 46205266558976, 193656954814464
Offset: 1
The first five polynomials p(n,x) and their reductions are as follows:
p(0, x) = 1 -> 1
p(1, x) = 2*x -> 2*x
p(2, x) = 3 + x + 3*x^2 -> 8 + 4*x
p(3, x) = 12*x + 4*x^2 + 4*x^3 -> 8 + 32*x
p(4, x) = 9 + 6*x + 31*x^2 + 10*x^3 + 5*x^4 -> 96 + 96*x.
From these, read A192386 = (1, 0, 8, 8, 96, ...) and A192387 = (0, 2, 4, 32, 96, ...).
-
R:=PowerSeriesRing(Integers(), 41);
Coefficients(R!( x*(1-2*x-4*x^2)/(1-2*x-12*x^2+8*x^3+16*x^4) )); // G. C. Greubel, Jul 10 2023
-
q[x_]:= x+1; d= Sqrt[x+5];
p[n_, x_]:= ((x+d)^n - (x-d)^n)/(2*d); (* suggested by A162517 *)
Table[Expand[p[n, x]], {n,6}]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[ FixedPoint[Expand[#1 /. reductionRules] &, p[n, x]], {n, 1, 30}];
Table[Coefficient[Part[t, n], x, 0], {n,30}] (* A192386 *)
Table[Coefficient[Part[t, n], x, 1], {n,30}] (* A192387 *)
Table[Coefficient[Part[t, n]/2, x, 1], {n,30}] (* A192388 *)
LinearRecurrence[{2,12,-8,-16}, {1,0,8,8}, 40] (* G. C. Greubel, Jul 10 2023 *)
-
@CachedFunction
def a(n): # a = A192386
if (n<5): return (0,1,0,8,8)[n]
else: return 2*a(n-1) +12*a(n-2) -8*a(n-3) -16*a(n-4)
[a(n) for n in range(1,41)] # G. C. Greubel, Jul 10 2023
Comments