cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A199346 Primes having only {3, 4, 6} as digits.

Original entry on oeis.org

3, 43, 433, 443, 463, 643, 3343, 3433, 3463, 3643, 4363, 4463, 4643, 4663, 6343, 33343, 36343, 36433, 36643, 43633, 44633, 46633, 46643, 46663, 63443, 63463, 64333, 64433, 64633, 64663, 66343, 66463, 66643, 333433, 334333, 334363, 334643, 336463, 336643, 343333, 343433, 344363, 346433, 363343, 363463, 364333, 364433, 364643
Offset: 1

Views

Author

M. F. Hasler, Nov 05 2011

Keywords

Comments

All terms end in 3 and have a number of digits '4' that is not divisible by 3.
A020461 is a subsequence. - Vincenzo Librandi, Jul 29 2015

Crossrefs

Cf. similar sequences listed in A199340.

Programs

  • Magma
    [p: p in PrimesUpTo(4*10^5) | Set(Intseq(p)) subset [3, 4, 6]]; // Vincenzo Librandi, Jul 29 2015
  • Mathematica
    Select[Flatten[Table[FromDigits/@(Flatten[{#,3},1]&/@Tuples[{3,4,6},n]),{n,0,5}]],PrimeQ] (* Harvey P. Dale, Jan 01 2013 *)
    Select[Prime[Range[10^5]], Complement[IntegerDigits[#], {3, 4, 6}]=={}&] (* Vincenzo Librandi, Jul 28 2015 *)
  • PARI
    a(n, list=0, L=[3, 4, 6], reqpal=0)={my(t); for(d=1, 1e9, u=vector(d, i, 10^(d-i))~; forvec(v=vector(d, i, [1+(i==1&!L[1]), #L]), isprime(t=vector(d, i, L[v[i]])*u) || next; reqpal & !isprime(A004086(t)) & next; list & print1(t", "); n--||return(t)))}
    

A261434 Primes having only {0, 3, 8} as digits.

Original entry on oeis.org

3, 83, 383, 883, 3083, 3803, 3833, 8803, 30803, 33083, 38083, 38303, 38333, 38803, 38833, 80803, 80833, 83003, 83383, 83833, 88003, 88883, 303803, 308003, 308303, 308333, 308383, 330383, 333383, 333803, 338033, 338383, 338803, 380333, 380383, 380803, 383083
Offset: 1

Views

Author

Vincenzo Librandi, Aug 18 2015

Keywords

Comments

A020464 is a subsequence.

Crossrefs

Cf. Primes that contain only the digits (0,3,k): A260044 (k=1), A260125 (k=2), A199340 (k=4), A260223 (k=5), A260378 (k=7), this sequence (k=8).

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^6) | Set(Intseq(p)) subset [0, 3, 8]];
  • Mathematica
    Select[Prime[Range[2 10^5]], Complement[IntegerDigits[#], {0, 3, 8}] == {} &]
    Select[FromDigits/@Tuples[{0,3,8},6],PrimeQ] (* Harvey P. Dale, Jul 10 2017 *)

A111488 Primes having only {0, 1, 3, 6} as digits.

Original entry on oeis.org

3, 11, 13, 31, 61, 101, 103, 113, 131, 163, 311, 313, 331, 601, 613, 631, 661, 1013, 1031, 1033, 1061, 1063, 1103, 1163, 1301, 1303, 1361, 1601, 1613, 1663, 3001, 3011, 3061, 3163, 3301, 3313, 3331, 3361, 3613, 3631, 6011, 6101, 6113, 6131, 6133, 6163
Offset: 1

Views

Author

Jonathan Vos Post, Nov 15 2005

Keywords

Comments

Includes all repunit primes (A004022). Conjecture: an infinite sequence. Note twin primes: (11, 13), (101, 103), (311, 313), (1031, 1033), (1061, 1063), (1301, 1303), (6131, 6133), (10301, 10303), (10331, 10333), (13001, 13003).
In other words, primes with digits in the set {0,1,3,6}. - M. F. Hasler, Jul 25 2015
The number of 1's in the representation must be either 1 or 2 (mod 3), because otherwise the number would be divisible by 3 (and therefore composite). The only exception is the 3 itself. This excludes basically members of A038603. - R. J. Mathar, Jul 25 2015

Crossrefs

Programs

  • Maple
    f:= proc(x) local L,p;
      L:= subs([3=6,2=3],convert(x,base,4));
      p:= add(L[i]*10^(i-1),i=1..nops(L));
      if isprime(p) then p fi
    end proc:
    map(f, [$1..4^4]); # Robert Israel, Dec 18 2018
  • Mathematica
    Select[Prime@ Range@ 1000, SubsetQ[{0, 1, 3, 6}, IntegerDigits@ #] &] (* Michael De Vlieger, Jul 25 2015 *)
  • PARI
    A111488={(n, show=0, L=[0,1,3,6])->my(t); for(d=1,1e9,u=vector(d, i, 10^(d-i))~; forvec(v=vector(d,i,[1+(i==1&&!L[1]), #L]), ispseudoprime(t=vector(d, i, L[v[i]])*u)||next; show&print1(t", "); n--||return(t)))} \\ M. F. Hasler, Jul 25 2015

Extensions

Corrected by Ray Chandler, Nov 19 2005
Name changed by Sean A. Irvine, Jul 21 2025

A386056 Primes having only {0, 3, 4, 5} as digits.

Original entry on oeis.org

3, 5, 43, 53, 353, 433, 443, 503, 3343, 3433, 3533, 4003, 5003, 5303, 5333, 5443, 5503, 30403, 30553, 33053, 33343, 33353, 33403, 33503, 33533, 34033, 34303, 34403, 34543, 35053, 35353, 35533, 35543, 40343, 40433, 40543, 43003, 43403, 43543, 44053, 44453, 44533
Offset: 1

Views

Author

Jason Bard, Jul 15 2025

Keywords

Crossrefs

Supersequence of A199340, A199345, A260223.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 3, 4, 5]];
    
  • Maple
    f:= n-> (l-> add([0, 3, 4, 5][l[j]+1]*10^(j-1), j=1..nops(l)))(convert(n, base, 4)):
    select(isprime, [seq(f(i), i=0..695)])[];  # Alois P. Heinz, Jul 15 2025
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 3, 4, 5}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 3, 4, 5]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0345"), 41))) # uses function/imports in A385776
    

A386057 Primes having only {0, 3, 4, 6} as digits.

Original entry on oeis.org

3, 43, 433, 443, 463, 643, 3343, 3433, 3463, 3643, 4003, 4363, 4463, 4603, 4643, 4663, 6043, 6343, 30403, 30643, 33343, 33403, 34033, 34303, 34403, 34603, 36343, 36433, 36643, 40063, 40343, 40433, 43003, 43063, 43403, 43633, 44633, 46633, 46643, 46663, 60343
Offset: 1

Views

Author

Jason Bard, Jul 15 2025

Keywords

Crossrefs

Subsequence of A030431.
Supersequence of A199340, A199346.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 3, 4, 6]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 3, 4, 6}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 3, 4, 6]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0346"), 41))) # uses function/imports in A385776
    

A386058 Primes having only {0, 3, 4, 7} as digits.

Original entry on oeis.org

3, 7, 37, 43, 47, 73, 307, 337, 347, 373, 433, 443, 733, 743, 773, 3037, 3307, 3343, 3347, 3373, 3407, 3433, 3733, 4003, 4007, 4073, 4337, 4373, 4447, 4703, 4733, 7043, 7307, 7333, 7433, 7477, 7703, 30047, 30307, 30347, 30403, 30703, 30707, 30773, 33037, 33073
Offset: 1

Views

Author

Jason Bard, Jul 15 2025

Keywords

Crossrefs

Supersequence of A199340, A199347, A260378, A384449.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 3, 4, 7]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 3, 4, 7}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 3, 4, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0347"), 41))) # uses function/imports in A385776
    

A386059 Primes having only {0, 3, 4, 8} as digits.

Original entry on oeis.org

3, 43, 83, 383, 433, 443, 883, 3083, 3343, 3433, 3803, 3833, 4003, 4483, 8443, 8803, 30403, 30803, 33083, 33343, 33403, 34033, 34303, 34403, 34483, 34843, 34883, 38083, 38303, 38333, 38803, 38833, 40343, 40433, 40483, 40883, 43003, 43403, 44383, 44483, 44843
Offset: 1

Views

Author

Jason Bard, Jul 15 2025

Keywords

Crossrefs

Subsequence of A030431.
Supersequence of A199340, A199348, A261434.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 3, 4, 8]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 3, 4, 8}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 3, 4, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0348"), 41))) # uses function/imports in A385776
    

A386060 Primes having only {0, 3, 4, 9} as digits.

Original entry on oeis.org

3, 43, 349, 409, 433, 439, 443, 449, 499, 3049, 3343, 3433, 3449, 3499, 3943, 4003, 4049, 4093, 4099, 4339, 4349, 4409, 4493, 4903, 4909, 4933, 4943, 4993, 4999, 9043, 9049, 9343, 9349, 9403, 9433, 9439, 9949, 30403, 30449, 30493, 30949, 33049, 33343, 33349, 33403
Offset: 1

Views

Author

Jason Bard, Jul 15 2025

Keywords

Crossrefs

Supersequence of A199340, A199349, A385768.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 3, 4, 9]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 3, 4, 9}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 3, 4, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0349"), 41))) # uses function/imports in A385776
    
Previous Showing 11-18 of 18 results.