cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 64 results. Next

A201926 Decimal expansion of the greatest x satisfying x^2+4x+3=e^x.

Original entry on oeis.org

3, 2, 9, 8, 6, 2, 7, 5, 6, 2, 8, 0, 3, 8, 6, 5, 1, 8, 0, 2, 5, 5, 9, 4, 1, 3, 1, 6, 4, 9, 2, 3, 4, 1, 3, 4, 3, 1, 8, 2, 0, 4, 3, 0, 3, 6, 5, 6, 2, 3, 9, 5, 6, 3, 7, 8, 3, 7, 0, 0, 8, 6, 3, 3, 5, 7, 8, 8, 6, 2, 0, 1, 5, 3, 4, 4, 6, 8, 4, 1, 7, 2, 0, 6, 2, 7, 1, 9, 0, 6, 5, 3, 7, 8, 4, 1, 2, 3, 0
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -3.024014501135293784775589627797395351659...
nearest to 0:  -0.79522661386054079889626155638871...
greatest:  3.2986275628038651802559413164923413431...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 4; c = 3;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3.5, 3.5}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -3.1, -3.0}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201924 *)
    r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201925 *)
     r = x /. FindRoot[f[x] == g[x], {x, 3.2, 3.3}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201926 *)

A201927 Decimal expansion of the least x satisfying x^2+4x+4=e^x.

Original entry on oeis.org

2, 3, 1, 4, 3, 6, 9, 9, 0, 2, 9, 6, 7, 6, 2, 8, 0, 1, 9, 1, 7, 3, 9, 1, 3, 3, 9, 2, 0, 4, 2, 9, 4, 7, 1, 8, 9, 3, 2, 0, 3, 5, 0, 5, 5, 7, 6, 8, 2, 8, 5, 8, 5, 9, 0, 7, 9, 3, 7, 5, 4, 4, 3, 2, 0, 9, 4, 9, 2, 5, 2, 5, 8, 4, 2, 1, 4, 5, 1, 0, 4, 0, 7, 3, 1, 4, 6, 5, 7, 5, 5, 4, 7, 5, 4, 9, 6, 6, 2
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -2.3143699029676280191739133920...
nearest to 0:  -1.53607809402693113051136705...
greatest:  3.3566939800333213068257690241...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 4; c = 4;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3.5}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -2.4, -2.3}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201927 *)
    r = x /. FindRoot[f[x] == g[x], {x, -1.6, -1.5}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201928 *)
     r = x /. FindRoot[f[x] == g[x], {x, 3.3, 3.4}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201929 *)

A201928 Decimal expansion of the x nearest 0 that satisfies x^2+4x+4=e^x.

Original entry on oeis.org

1, 5, 3, 6, 0, 7, 8, 0, 9, 4, 0, 2, 6, 9, 3, 1, 1, 3, 0, 5, 1, 1, 3, 6, 7, 0, 5, 2, 1, 5, 5, 0, 9, 5, 9, 8, 1, 8, 1, 3, 6, 9, 8, 2, 9, 7, 7, 4, 3, 8, 3, 6, 3, 8, 9, 0, 2, 0, 6, 2, 0, 6, 5, 4, 4, 9, 6, 7, 5, 7, 7, 8, 0, 2, 5, 5, 2, 4, 6, 8, 4, 1, 4, 1, 8, 2, 9, 0, 2, 7, 8, 0, 4, 0, 6, 7, 9, 0, 5
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -2.3143699029676280191739133920...
nearest to 0:  -1.53607809402693113051136705...
greatest:  3.3566939800333213068257690241...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 4; c = 4;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3.5}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -2.4, -2.3}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201927 *)
    r = x /. FindRoot[f[x] == g[x], {x, -1.6, -1.5}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201928 *)
     r = x /. FindRoot[f[x] == g[x], {x, 3.3, 3.4}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201929 *)

A201929 Decimal expansion of the greatest x satisfying x^2+4x+4=e^x.

Original entry on oeis.org

3, 3, 5, 6, 6, 9, 3, 9, 8, 0, 0, 3, 3, 3, 2, 1, 3, 0, 6, 8, 2, 5, 7, 6, 9, 0, 2, 4, 1, 8, 9, 0, 4, 6, 1, 6, 9, 6, 4, 8, 9, 1, 7, 5, 3, 0, 7, 0, 3, 2, 0, 4, 4, 3, 2, 7, 9, 6, 6, 8, 3, 7, 3, 6, 7, 9, 8, 0, 9, 5, 2, 9, 1, 3, 7, 1, 4, 2, 6, 8, 7, 3, 9, 9, 4, 9, 3, 9, 6, 4, 8, 3, 7, 6, 2, 4, 1, 2, 7
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -2.3143699029676280191739133920...
nearest to 0:  -1.536078094026931130511...
greatest:  3.35669398003332130682576902...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 4; c = 4;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -3, 3.5}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -2.4, -2.3}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201927 *)
    r = x /. FindRoot[f[x] == g[x], {x, -1.6, -1.5}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201928 *)
     r = x /. FindRoot[f[x] == g[x], {x, 3.3, 3.4}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201929 *)

A201933 Decimal expansion of the least x satisfying x^2 + 5*x + 2 = e^x.

Original entry on oeis.org

4, 5, 6, 4, 0, 7, 8, 3, 6, 0, 3, 7, 9, 3, 7, 7, 2, 0, 1, 3, 4, 1, 4, 8, 6, 8, 5, 2, 3, 4, 2, 0, 7, 4, 4, 8, 0, 6, 9, 5, 7, 9, 6, 4, 3, 4, 6, 1, 3, 1, 4, 1, 1, 1, 2, 5, 2, 3, 5, 7, 5, 3, 5, 9, 5, 4, 2, 6, 0, 2, 8, 0, 7, 3, 3, 7, 5, 3, 7, 0, 3, 7, 9, 6, 6, 5, 8, 2, 3, 8, 8, 1, 9, 7, 7, 1, 3, 8, 2
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -4.5640783603793772013414868523420...
nearest to 0:  -0.259069533051109108686405...
greatest:  3.43200871161068035280379146269...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 5; c = 2;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -5, 3.5}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -4.6, -4.5}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201933 *)
    r = x /. FindRoot[f[x] == g[x], {x, -.3, -.2}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201934 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.4, 3.5}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201935 *)

Extensions

a(87) onwards corrected by Georg Fischer, Aug 03 2021

A201934 Decimal expansion of the x nearest 0 that satisfies x^2+5x+2=e^x.

Original entry on oeis.org

2, 5, 9, 0, 6, 9, 5, 3, 3, 0, 5, 1, 1, 0, 9, 1, 0, 8, 6, 8, 6, 4, 0, 5, 6, 6, 4, 6, 5, 5, 9, 6, 2, 2, 6, 2, 8, 9, 6, 4, 8, 0, 5, 4, 5, 7, 8, 6, 4, 2, 5, 5, 1, 3, 1, 6, 9, 2, 1, 5, 6, 5, 9, 4, 9, 0, 1, 7, 2, 4, 9, 0, 0, 0, 8, 8, 2, 5, 6, 7, 1, 2, 6, 4, 9, 8, 1, 3, 4, 8, 3, 9, 7, 0, 1, 2, 4, 8, 4
Offset: 0

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -4.5640783603793772013414868523420...
nearest to 0:  -0.259069533051109108686405...
greatest:  3.43200871161068035280379146269...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 5; c = 2;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -5, 3.5}, {AxesOrigin -> {0, 0}}]
     r = x /. FindRoot[f[x] == g[x], {x, -4.6, -4.5}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201933 *)
     r = x /. FindRoot[f[x] == g[x], {x, -.3, -.2}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201934 *)
     r = x /. FindRoot[f[x] == g[x], {x, 3.4, 3.5}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201935 *)
    RealDigits[x/.FindRoot[x^2+5x+2==E^x,{x,1},WorkingPrecision->120],10,120][[1]] (* Harvey P. Dale, Mar 30 2025 *)

A201935 Decimal expansion of the greatest x satisfying x^2+5x+2=e^x.

Original entry on oeis.org

3, 4, 3, 2, 0, 0, 8, 7, 1, 1, 6, 1, 0, 6, 8, 0, 3, 5, 2, 8, 0, 3, 7, 9, 1, 4, 6, 2, 6, 9, 4, 7, 1, 9, 7, 0, 6, 0, 4, 2, 2, 3, 3, 0, 3, 7, 3, 5, 4, 2, 0, 5, 2, 1, 0, 0, 8, 7, 1, 4, 8, 9, 9, 5, 3, 7, 4, 7, 9, 7, 1, 1, 3, 4, 3, 6, 4, 6, 3, 1, 4, 1, 6, 5, 3, 4, 9, 1, 1, 4, 0, 0, 4, 6, 5, 3, 3, 1, 8
Offset: 1

Views

Author

Clark Kimberling, Dec 06 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -4.5640783603793772013414868523420...
nearest to 0:  -0.259069533051109108686405...
greatest:  3.43200871161068035280379146269...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = 1; b = 5; c = 2;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -5, 3.5}, {AxesOrigin -> {0, 0}}]
     r = x /. FindRoot[f[x] == g[x], {x, -4.6, -4.5}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201933 *)
     r = x /. FindRoot[f[x] == g[x], {x, -.3, -.2}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201934 *)
     r = x /. FindRoot[f[x] == g[x], {x, 3.4, 3.5}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201935 *)

A201751 Decimal expansion of the least x satisfying -x^2+2=e^x.

Original entry on oeis.org

1, 3, 1, 5, 9, 7, 3, 7, 7, 7, 7, 9, 6, 2, 9, 0, 1, 8, 7, 8, 8, 7, 1, 7, 7, 3, 8, 7, 3, 0, 1, 2, 7, 1, 0, 4, 8, 0, 1, 8, 9, 3, 7, 8, 5, 6, 0, 5, 1, 1, 5, 2, 5, 1, 3, 8, 4, 8, 7, 8, 1, 5, 9, 7, 3, 3, 6, 8, 8, 0, 0, 4, 3, 3, 5, 4, 6, 2, 5, 1, 1, 2, 1, 4, 4, 0, 1, 5, 4, 4, 0, 8, 3, 8, 5, 5, 4, 1, 6
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -1.3159737777962901878871773873012710...
greatest:  0.53727444917385660425676298977967...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = -1; b = 0; c = 2;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -2, 1}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.4, -1.3}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201751 *)
    r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201752 *)

A201753 Decimal expansion of the least x satisfying -x^2+3=e^x.

Original entry on oeis.org

1, 6, 7, 7, 2, 3, 2, 7, 0, 8, 5, 3, 2, 5, 3, 7, 9, 9, 8, 8, 9, 2, 7, 0, 1, 0, 1, 1, 7, 7, 9, 4, 2, 1, 7, 6, 9, 4, 5, 1, 2, 8, 9, 8, 5, 8, 1, 4, 2, 5, 6, 2, 3, 3, 9, 0, 2, 0, 0, 5, 9, 7, 0, 7, 0, 3, 6, 6, 6, 4, 7, 9, 1, 7, 1, 8, 0, 7, 4, 4, 3, 2, 0, 2, 8, 0, 5, 2, 2, 3, 4, 1, 2, 6, 7, 0, 2, 6, 0
Offset: 1

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -1.677232708532537998892701011779421...
greatest:  0.8344868653087587860911016801273...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = -1; b = 0; c = 3;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -2, 1}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.7, -1.6}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201753 *)
    r = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201754 *)

A201754 Decimal expansion of the greatest x satisfying -x^2+3=e^x.

Original entry on oeis.org

8, 3, 4, 4, 8, 6, 8, 6, 5, 3, 0, 8, 7, 5, 8, 7, 8, 6, 0, 9, 1, 1, 0, 1, 6, 8, 0, 1, 2, 7, 3, 3, 7, 7, 8, 9, 8, 3, 5, 7, 0, 3, 0, 3, 8, 0, 7, 9, 9, 2, 5, 9, 1, 2, 5, 9, 7, 5, 0, 6, 4, 1, 0, 8, 7, 8, 7, 0, 4, 2, 2, 0, 8, 0, 0, 5, 2, 3, 6, 6, 5, 4, 6, 8, 2, 1, 0, 9, 5, 1, 3, 5, 6, 5, 6, 3, 4, 6, 9
Offset: 0

Views

Author

Clark Kimberling, Dec 05 2011

Keywords

Comments

See A201741 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  -1.677232708532537998892701011779421...
greatest:  0.8344868653087587860911016801273...
		

Crossrefs

Cf. A201741.

Programs

  • Mathematica
    a = -1; b = 0; c = 3;
    f[x_] := a*x^2 + b*x + c; g[x_] := E^x
    Plot[{f[x], g[x]}, {x, -2, 1}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, -1.7, -1.6}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201753 *)
    r = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201754 *)
Previous Showing 11-20 of 64 results. Next