cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A284633 Numbers n with digits 3 and 6 only.

Original entry on oeis.org

3, 6, 33, 36, 63, 66, 333, 336, 363, 366, 633, 636, 663, 666, 3333, 3336, 3363, 3366, 3633, 3636, 3663, 3666, 6333, 6336, 6363, 6366, 6633, 6636, 6663, 6666, 33333, 33336, 33363, 33366, 33633, 33636, 33663, 33666, 36333, 36336, 36363, 36366, 36633, 36636
Offset: 1

Views

Author

Jaroslav Krizek, Mar 30 2017

Keywords

Comments

All terms after 3 are composite.

Crossrefs

Cf. A007931.
Numbers n with digits 6 and k only for k = 0..5 and 7..9: A204093 (k = 0), A284293 (k = 1), A284632 (k = 2), this sequence (k = 3), A284634 (k = 4), A256291 (k = 5), A256292 (k = 7), A284635 (k = 8), A284636 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {3, 6}]
  • Mathematica
    Table[Map[FromDigits, Tuples[{3, 6}, {k}]], {k, 5}] // Flatten (* Michael De Vlieger, Mar 30 2017 *)

Formula

a(n) = 3*A007931(n). - Michel Marcus, Mar 30 2017

A284636 Numbers with digits 6 and 9 only.

Original entry on oeis.org

6, 9, 66, 69, 96, 99, 666, 669, 696, 699, 966, 969, 996, 999, 6666, 6669, 6696, 6699, 6966, 6969, 6996, 6999, 9666, 9669, 9696, 9699, 9966, 9969, 9996, 9999, 66666, 66669, 66696, 66699, 66966, 66969, 66996, 66999, 69666, 69669, 69696, 69699, 69966, 69969
Offset: 1

Views

Author

Jaroslav Krizek, Apr 02 2017

Keywords

Comments

All terms are composite.
All terms are divisible by 3. - Michael S. Branicky, Jun 09 2021

Crossrefs

Cf. A032810.
Numbers n with digits 6 and k only for k = 0 - 5 and 7 - 9: A204093 (k = 0), A284293 (k = 1), A284632 (k = 2), A284633 (k = 3), A284634 (k = 4), A256291 (k = 5), A256292 (k = 7), A284635 (k = 8), this sequence (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {6, 9}]
    
  • Mathematica
    Table[FromDigits /@ Tuples[{6, 9}, n], {n, 5}] // Flatten (* or *)
    Select[Range@ 70000, Total@ Pick[DigitCount@ #, {0, 0, 0, 0, 0, 1, 0, 0, 1, 0}, 0] == 0 &] (* Michael De Vlieger, Apr 02 2017 *)
  • PARI
    a(n) = {
      my(z, e = logint(n+1,2,&z),
         t1 = 9 * subst(Pol(binary(n+1-z),'x), 'x, 10),
         t2 = 6 * subst(Pol(binary(2*z-2-n),'x), 'x, 10));
      t1+t2;
    };
    vector(44, n, a(n)) \\ Gheorghe Coserea, Apr 04 2017
    
  • Python
    def a(n): return int(bin(n+1)[3:].replace('0', '6').replace('1', '9'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, Jun 09 2021

Formula

a(n) = 3 * A032810(n).

A284635 Numbers with digits 6 and 8 only.

Original entry on oeis.org

6, 8, 66, 68, 86, 88, 666, 668, 686, 688, 866, 868, 886, 888, 6666, 6668, 6686, 6688, 6866, 6868, 6886, 6888, 8666, 8668, 8686, 8688, 8866, 8868, 8886, 8888, 66666, 66668, 66686, 66688, 66866, 66868, 66886, 66888, 68666, 68668, 68686, 68688, 68866, 68868
Offset: 1

Views

Author

Jaroslav Krizek, Apr 02 2017

Keywords

Comments

All terms are even.

Crossrefs

Cf. A032834.
Numbers n with digits 6 and k only for k = 0 - 5 and 7 - 9: A204093 (k = 0), A284293 (k = 1), A284632 (k = 2), A284633 (k = 3), A284634 (k = 4), A256291 (k = 5), A256292 (k = 7), this sequence (k = 8), A284636 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {6, 8}]
    
  • Mathematica
    Table[FromDigits /@ Tuples[{6, 8}, n], {n, 5}] // Flatten (* or *)
    Select[Range@ 70000, Total@ Pick[DigitCount@ #, {0, 0, 0, 0, 0, 1, 0, 1, 0, 0}, 0] == 0 &] (* Michael De Vlieger, Apr 02 2017 *)
  • Python
    def a(n): return int(bin(n+1)[3:].replace('0', '6').replace('1', '8'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, Jun 08 2021

Formula

a(n) = 2 * A032834(n).

A078245 Smallest multiple of n using only digits 0 and 6.

Original entry on oeis.org

6, 6, 6, 60, 60, 6, 6006, 600, 666, 60, 66, 60, 6006, 6006, 60, 6000, 66606, 666, 66006, 60, 6006, 66, 660606, 600, 600, 6006, 666666666, 60060, 6606606, 60, 666066, 60000, 66, 66606, 60060, 6660, 666, 66006, 6006, 600, 66666, 6006, 6606606, 660, 6660, 660606
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Comments

a(n) = min{A204093(k): k > 0 and A204093(k) mod n = 0}. [Reinhard Zumkeller, Jan 10 2012]

Crossrefs

Programs

  • Haskell
    a078245 n = head [x | x <- tail a204093_list, mod x n == 0]
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Mathematica
    With[{c=Rest[FromDigits/@Tuples[{0,6},10]]},Table[SelectFirst[c,Divisible[ #,n]&],{n,50}]] (* The program uses the SelectFirst function from Mathematica version 10 *) (* Harvey P. Dale, Apr 15 2015 *)
  • Python
    def A204093(n): return int(bin(n)[2:].replace('1', '6'))
    def a(n):
        k = 1
        while A204093(k)%n: k += 1
        return A204093(k)
    print([a(n) for n in range(1, 47)]) # Michael S. Branicky, Jun 06 2021

Extensions

More terms from Ray Chandler, Jul 12 2004
Previous Showing 11-14 of 14 results.