A358592 Matula-Goebel numbers of rooted trees whose height, number of leaves, and number of internal (non-leaf) nodes are all equal.
18, 21, 60, 70, 78, 91, 92, 95, 102, 111, 119, 122, 129, 146, 151, 181, 201, 227, 264, 269, 308, 348, 376, 406, 418, 426, 452, 492, 497, 519, 551, 562, 574, 583, 596, 606, 659, 664, 668, 698, 707, 708, 717, 779, 794, 796, 809, 826, 834, 911, 932, 934, 942, 958
Offset: 1
Keywords
Examples
The terms together with their corresponding rooted trees begin: 18: (o(o)(o)) 21: ((o)(oo)) 60: (oo(o)((o))) 70: (o((o))(oo)) 78: (o(o)(o(o))) 91: ((oo)(o(o))) 92: (oo((o)(o))) 95: (((o))(ooo)) 102: (o(o)((oo))) 111: ((o)(oo(o))) 119: ((oo)((oo))) 122: (o(o(o)(o))) 129: ((o)(o(oo))) 146: (o((o)(oo))) 151: ((oo(o)(o))) 181: ((o(o)(oo))) 201: ((o)((ooo))) 227: (((oo)(oo)))
Links
Crossrefs
A034781 counts rooted trees by nodes and height.
Programs
-
Mathematica
MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],Count[MGTree[#],[_],{0,Infinity}]==Count[MGTree[#],{},{0,Infinity}]==Depth[MGTree[#]]-1&]
Comments