cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A372801 Order of 16 modulo the n-th prime: least k such that prime(n) divides 16^k-1.

Original entry on oeis.org

1, 1, 3, 5, 3, 2, 9, 11, 7, 5, 9, 5, 7, 23, 13, 29, 15, 33, 35, 9, 39, 41, 11, 12, 25, 51, 53, 9, 7, 7, 65, 17, 69, 37, 15, 13, 81, 83, 43, 89, 45, 95, 24, 49, 99, 105, 37, 113, 19, 29, 119, 6, 25, 4, 131, 67, 135, 23, 35, 47, 73, 51, 155, 39, 79, 15, 21, 173, 87, 22, 179
Offset: 2

Views

Author

Jianing Song, May 13 2024

Keywords

Comments

a(n) is the period of the expansion of 1/prime(n) in hexadecimal.

Crossrefs

Cf. A302141 (order of 16 mod 2n+1).

Programs

  • PARI
    a(n) = znorder(Mod(16, prime(n))).

Formula

a(n) = A014664(n)/gcd(4, A014664(n)) = A082654(n)/gcd(2, A082654(n)).
a(n) <= (prime(n) - 1)/2.

A305331 Multiplicative order of 5 (mod p^2), where p = prime(n), or 0 if 5 and p are not coprime.

Original entry on oeis.org

1, 6, 0, 42, 55, 52, 272, 171, 506, 406, 93, 1332, 820, 1806, 2162, 2756, 1711, 1830, 1474, 355, 5256, 3081, 6806, 3916, 9312, 2525, 10506, 11342, 2943, 12656, 5334, 8515, 18632, 9591, 5513, 11325, 24492, 8802, 27722, 29756, 15931, 2715, 3629, 37056, 38612
Offset: 1

Views

Author

Felix Fröhlich, May 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[p==5, 0, MultiplicativeOrder[5, p^2]], {p, Prime@ Range@ 45}] (* Giovanni Resta, May 31 2018 *)
  • PARI
    a(n) = my(p=prime(n)); if(p==5, return(0), return(znorder(Mod(5, p^2))))

A305332 Multiplicative order of 5 (mod A123692(n)^2).

Original entry on oeis.org

1, 10385, 40486, 13367790, 1645333506, 6692367336, 11796759175
Offset: 1

Views

Author

Felix Fröhlich, May 30 2018

Keywords

Comments

From Eric Chen, Jun 07 2018: (Start)
b known Wieferich primes in base b (multiplicative order of b mod these primes (also these primes^2)) (if the order is p-1, then b is a primitive root to mod this prime (but not mod this prime^2), see A055578)
2 1093 (364), 3511 (1755)
3 11 (5), 1006003 (1006002)
4 1093 (182), 3511 (1755)
5 2 (1), 20771 (10385), 40487 (40486), 53471161 (13367790), 1645333507 (1645333506), 6692367337 (6692367336), 188748146801 (11796759175)
6 66161 (66160), 534851 (106970), 3152573 (788143)
7 5 (4), 491531 (245765)
8 3 (2), 1093 (364), 3511 (585)
9 2 (1), 11 (5), 1006003 (503001)
10 3 (1), 487 (486), 56598313 (56598312)
11 71 (70)
12 2693 (2692), 123653 (123652)
13 2 (1), 863 (862), 1747591 (873795)
14 29 (28), 353 (352), 7596952219 (7596952218)
15 29131 (29130), 119327070011 (59663535005)
16 1093 (91), 3511 (1755)
17 2 (1), 3 (2), 46021 (7670), 48947 (24473), 478225523351 (478225523350)
18 5 (4), 7 (3), 37 (36), 331 (110), 33923 (33922), 1284043 (428014)
19 3 (1), 7 (6), 13 (12), 43 (42), 137 (68), 63061489 (63061488)
20 281 (140), 46457 (46456), 9377747 (9377746), 122959073 (122959072)
21 2 (1)
22 13 (3), 673 (224), 1595813 (797906), 492366587 (246183293), 9809862296159 (44999368331)
23 13 (6), 2481757 (827252), 13703077 (13703076), 15546404183 (7773202091), 2549536629329 (2549536629328)
24 5 (2), 25633 (6408)
These orders n will satisfy that Phi_n(b) is divisible by p^2, where Phi is the cyclotomic polynomial. (Usually, Phi_n(b) is squarefree, but these are all exceptions; i.e., if p^2 divides Phi_n(b) (except the case p = 2, n = 2 and b == 3 (mod 4)), then p is a Wieferich prime in base b.)
(End)

Crossrefs

Programs

  • PARI
    v=[2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801]; for(k=1, #v, print1(znorder(Mod(5, v[k]^2)), ", "))

Formula

a(n) = A305331(A123692(n)).

A305333 Let p be the n-th base-5 Wieferich prime (A123692). a(n) is the value of p-1 divided by the multiplicative order of 5 (mod p^2).

Original entry on oeis.org

1, 2, 1, 4, 1, 1, 16
Offset: 1

Views

Author

Felix Fröhlich, May 30 2018

Keywords

Crossrefs

Programs

  • PARI
    v=[2, 20771, 40487, 53471161, 1645333507, 6692367337, 188748146801]; for(k=1, #v, my(ord=znorder(Mod(5, v[k]^2))); print1((v[k]-1)/ord, ", "))

Formula

a(n) = (A123692(n)-1)/A305332(n).

A383411 Primes p such that gcd(ord_p(3), ord_p(5)) = 1.

Original entry on oeis.org

2, 13, 313, 51169, 797161, 3482851, 5096867, 12207031, 162410641, 368385827, 1001523179, 4902814883, 104849105869, 131772143257, 572027881891
Offset: 1

Views

Author

Li GAN, Apr 26 2025

Keywords

Comments

'ord_p' here means the multiplicative order modulo p, not to be confused with the p-adic order that is also often denoted by ord_p.

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], PrimeQ[#] && CoprimeQ[MultiplicativeOrder[3, #], MultiplicativeOrder[5, #]] &]
  • PARI
    forprime(p=13,oo,if(1==gcd(znorder(Mod(5,p)),znorder(Mod(3,p))),print1(p,", "))); \\ Joerg Arndt, Apr 26 2025

Extensions

a(13)-a(15) from Bill McEachen, May 11 2025

A240660 Least k such that 5^k == -1 (mod prime(n)), or 0 if no such k exists.

Original entry on oeis.org

1, 1, 0, 3, 0, 2, 8, 0, 11, 7, 0, 18, 10, 21, 23, 26, 0, 15, 11, 0, 36, 0, 41, 22, 48, 0, 51, 53, 0, 56, 21, 0, 68, 0, 0, 0, 78, 27, 83, 86, 0, 0, 0, 96, 98, 0, 0, 111, 113, 57, 116, 0, 20, 0, 128, 131, 0, 0, 138, 70, 141, 146, 153, 0, 4, 158, 0, 56, 173, 87
Offset: 1

Views

Author

T. D. Noe, Apr 14 2014

Keywords

Comments

The least k, if it exists, such that prime(n) divides 5^k + 1.

Crossrefs

Cf. A211241 (order of 5 mod prime(n)).

Programs

  • Mathematica
    Table[p = Prime[n]; s = Select[Range[p/2], PowerMod[5, #, p] == p - 1 &, 1]; If[s == {}, 0, s[[1]]], {n, 100}]

Formula

a(1) = 1; for n > 1, a(n) = A211241(n)/2 if A211241(n) is even, otherwise 0.

A323376 Square array read by ascending antidiagonals: T(n,k) is the multiplicative order of the n-th prime modulo the k-th prime, or 0 if n = k, n >= 1, k >= 1.

Original entry on oeis.org

0, 1, 2, 1, 0, 4, 1, 2, 4, 3, 1, 1, 0, 6, 10, 1, 2, 4, 6, 5, 12, 1, 1, 1, 0, 5, 3, 8, 1, 2, 4, 3, 10, 4, 16, 18, 1, 1, 4, 2, 0, 12, 16, 18, 11, 1, 2, 2, 6, 10, 12, 16, 9, 11, 28, 1, 2, 4, 6, 10, 0, 16, 3, 22, 28, 5, 1, 1, 2, 3, 10, 6, 4, 3, 22, 14, 30, 36
Offset: 1

Views

Author

Jianing Song, Jan 12 2019

Keywords

Comments

The maximum element in the k-th column is prime(k) - 1. By Dirichlet's theorem on arithmetic progressions, all divisors of prime(k) - 1 occur infinitely many times in the n-th column.

Examples

			Table begins
     |  k  | 1  2  3  4   5   6   7   8   9  10  ...
   n | p() | 2  3  5  7  11  13  17  19  23  29  ...
  ---+-----+----------------------------------------
   1 |   2 | 0, 2, 4, 3, 10, 12,  8, 18, 11, 28, ...
   2 |   3 | 1, 0, 4, 6,  5,  3, 16, 18, 11, 28, ...
   3 |   5 | 1, 2, 0, 6,  5,  4, 16,  9, 22, 14, ...
   4 |   7 | 1, 1, 4, 0, 10, 12, 16,  3, 22,  7, ...
   5 |  11 | 1, 2, 1, 3,  0, 12, 16,  3, 22, 28, ...
   6 |  13 | 1, 1, 4, 2, 10,  0,  4, 18, 11, 14, ...
   7 |  17 | 1, 2, 4, 6, 10,  6,  0,  9, 22,  4, ...
   8 |  19 | 1, 1, 2, 6, 10, 12,  8,  0, 22, 28, ...
   9 |  23 | 1, 2, 4, 3,  1,  6, 16,  9 , 0,  7, ...
  10 |  29 | 1, 2, 2, 1, 10,  3, 16, 18, 11,  0, ...
  ...
		

Crossrefs

Cf. A250211.
Cf. A014664 (1st row), A062117 (2nd row), A211241 (3rd row), A211243 (4th row), A039701 (2nd column).
Cf. A226367 (lower diagonal), A226295 (upper diagonal).

Programs

  • Maple
    A:= (n, k)-> `if`(n=k, 0, (p-> numtheory[order](p(n), p(k)))(ithprime)):
    seq(seq(A(1+d-k, k), k=1..d), d=1..14);  # Alois P. Heinz, Feb 06 2019
  • Mathematica
    T[n_, k_] := If[n == k, 0, MultiplicativeOrder[Prime[n], Prime[k]]];Table[T[n, k], {n, 1, 10}, {k, 1, 10}] (* Peter Luschny, Jan 20 2019 *)
  • PARI
    T(n,k) = if(n==k, 0, znorder(Mod(prime(n), prime(k))))

Formula

T(n,k) = A250211(prime(n), prime(k)).

A382414 Primes p such that gcd(ord_p(2), ord_p(5)) = 1.

Original entry on oeis.org

31, 601, 2593, 599479, 204700049, 466344409, 668731841, 11638603429
Offset: 1

Views

Author

Li GAN, Apr 26 2025

Keywords

Comments

'ord_p' here means the multiplicative order modulo p, not to be confused with the p-adic order that is also often denoted by ord_p.
1790799748670521, 58523123221688392679 and 14551915228363037109375001 are also terms. - Giorgos Kalogeropoulos, May 03 2025

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], PrimeQ[#] && CoprimeQ[MultiplicativeOrder[2, #], MultiplicativeOrder[5, #]] &]
  • PARI
    forprime(p=13, oo, if(1==gcd(znorder(Mod(5, p)), znorder(Mod(2, p))), print1(p, ", "))); \\ Joerg Arndt, Apr 26 2025
Previous Showing 21-28 of 28 results.