cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A066620 Number of unordered triples of distinct pairwise coprime divisors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 7, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 7, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 13, 0, 1, 2, 0, 1, 7, 0, 2, 1, 7, 0, 6, 0, 1, 2, 2, 1, 7, 0, 4, 0, 1, 0, 13, 1, 1, 1, 3, 0, 13, 1, 2, 1, 1, 1, 5, 0, 2, 2, 4, 0, 7, 0
Offset: 1

Views

Author

K. B. Subramaniam (kb_subramaniambalu(AT)yahoo.com) and Amarnath Murthy, Dec 24 2001

Keywords

Comments

a(m) = a(n) if m and n have same factorization structure.

Examples

			a(24) = 3: the divisors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24. The triples are (1, 2, 3), (1, 2, 9), (1, 3, 4).
a(30) = 7: the triples are (1, 2, 3), (1, 2, 5), (1, 3, 5), (2, 3, 5), (1, 3, 10), (1, 5, 6), (1, 2, 15).
		

References

  • Amarnath Murthy, Decomposition of the divisors of a natural number into pairwise coprime sets, Smarandache Notions Journal, vol. 12, No. 1-2-3, Spring 2001.pp 303-306.

Crossrefs

Positions of zeros are A000961.
Positions of ones are A006881.
The version for subsets of {1..n} instead of divisors is A015617.
The non-strict ordered version is A048785.
The version for pairs of divisors is A063647.
The non-strict version (3-multisets) is A100565.
The version for partitions is A220377 (non-strict: A307719).
A version for sets of divisors of any size is A225520.
A000005 counts divisors.
A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.
A007304 ranks 3-part strict partitions.
A014311 ranks 3-part compositions.
A014612 ranks 3-part partitions.
A018892 counts unordered pairs of coprime divisors (ordered: A048691).
A051026 counts pairwise indivisible subsets of {1..n}.
A337461 counts 3-part pairwise coprime compositions.
A338331 lists Heinz numbers of pairwise coprime partitions.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Divisors[n],{3}],CoprimeQ@@#&]],{n,100}] (* Gus Wiseman, Apr 28 2021 *)
  • PARI
    A066620(n) = (numdiv(n^3)-3*numdiv(n)+2)/6; \\ After Jovovic's formula. - Antti Karttunen, May 27 2017
    
  • Python
    from sympy import divisor_count as d
    def a(n): return (d(n**3) - 3*d(n) + 2)/6 # Indranil Ghosh, May 27 2017

Formula

In the reference it is shown that if k is a squarefree number with r prime factors and m with (r+1) prime factors then a(m) = 4*a(k) + 2^k - 1.
a(n) = (tau(n^3)-3*tau(n)+2)/6. - Vladeta Jovovic, Nov 27 2004

Extensions

More terms from Vladeta Jovovic, Apr 03 2003
Name corrected by Andrey Zabolotskiy, Dec 09 2020
Name corrected by Gus Wiseman, Apr 28 2021 (ordered version is 6*a(n))

A317578 Number T(n,k) of distinct integers that are product of the parts of exactly k partitions of n into 3 positive parts; triangle T(n,k), n>=3, k>=1, read by rows.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 12, 1, 12, 2, 19, 19, 1, 22, 1, 27, 28, 1, 31, 1, 31, 3, 38, 1, 42, 1, 46, 1, 50, 1, 50, 3, 57, 2, 51, 7, 64, 3, 71, 2, 70, 5, 77, 4, 85, 3, 86, 5, 84, 9, 104, 2, 104, 5, 108, 6, 108, 8, 1, 123, 5, 122, 9, 119, 14, 136, 9, 147, 7
Offset: 3

Views

Author

Alois P. Heinz, Jul 31 2018

Keywords

Examples

			T(13,2) = 1: only 36 is product of the parts of exactly 2 partitions of 13 into 3 positive parts: [6,6,1], [9,2,2].
T(14,2) = 2: 40 ([8,5,1], [10,2,2]) and 72 ([6,6,2], [8,3,3]).
T(39,3) = 1: 1200 ([20,15,4], [24,10,5], [25,8,6]).
T(49,3) = 2: 3024 ([24,18,7], [27,14,8], [28,12,9]) and 3600 ([20,20,9], [24,15,10], [25,12,12]).
Triangle T(n,k) begins:
   1;
   1;
   2;
   3;
   4;
   5;
   7;
   8;
  10;
  12;
  12, 1;
  12, 2;
  19;
  19, 1;
  22, 1;
		

Crossrefs

Row sums give A306403.
Column k=1 gives A306435.

Programs

  • Maple
    b:= proc(n) option remember; local m, c, i, j, h, w;
          m, c:= proc() 0 end, 0; forget(m);
          for i to iquo(n, 3) do for j from i to iquo(n-i, 2) do
            h:= i*j*(n-j-i);
            w:= m(h); w:= w+1; m(h):= w;
            c:= c+x^w-x^(w-1)
          od od; c
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
    seq(T(n), n=3..100);
  • Mathematica
    b[n_] := b[n] = Module[{m, c, i, j, h, w} , m[_] = 0; c = 0; For[i = 1, i <= Quotient[n, 3], i++, For[j = i, j <= Quotient[n - i, 2], j++, h = i*j*(n-j-i); w = m[h]; w++; m[h] = w; c = c + x^w - x^(w-1)]]; c];
    T[n_] := CoefficientList[b[n], x] // Rest;
    T /@ Range[3, 100] // Flatten (* Jean-François Alcover, Jun 13 2021, after Alois P. Heinz *)

Formula

Sum_{k>=1} k * T(n,k) = A001399(n-3) = A069905(n) = A211540(n+2).
Sum_{k>=2} T(n,k) = A060277(n).
min { n >= 0 : T(n,k) > 0 } = A103277(k).

A337459 Numbers k such that the k-th composition in standard order is a unimodal triple.

Original entry on oeis.org

7, 11, 13, 14, 19, 21, 25, 26, 28, 35, 37, 41, 42, 49, 50, 52, 56, 67, 69, 73, 74, 81, 82, 84, 97, 98, 100, 104, 112, 131, 133, 137, 138, 145, 146, 161, 162, 164, 168, 193, 194, 196, 200, 208, 224, 259, 261, 265, 266, 273, 274, 289, 290, 292, 321, 322, 324
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding triples begins:
      7: (1,1,1)     52: (1,2,3)    133: (5,2,1)
     11: (2,1,1)     56: (1,1,4)    137: (4,3,1)
     13: (1,2,1)     67: (5,1,1)    138: (4,2,2)
     14: (1,1,2)     69: (4,2,1)    145: (3,4,1)
     19: (3,1,1)     73: (3,3,1)    146: (3,3,2)
     21: (2,2,1)     74: (3,2,2)    161: (2,5,1)
     25: (1,3,1)     81: (2,4,1)    162: (2,4,2)
     26: (1,2,2)     82: (2,3,2)    164: (2,3,3)
     28: (1,1,3)     84: (2,2,3)    168: (2,2,4)
     35: (4,1,1)     97: (1,5,1)    193: (1,6,1)
     37: (3,2,1)     98: (1,4,2)    194: (1,5,2)
     41: (2,3,1)    100: (1,3,3)    196: (1,4,3)
     42: (2,2,2)    104: (1,2,4)    200: (1,3,4)
     49: (1,4,1)    112: (1,1,5)    208: (1,2,5)
     50: (1,3,2)    131: (6,1,1)    224: (1,1,6)
		

Crossrefs

A337460 is the non-unimodal version.
A000217(n - 2) counts 3-part compositions.
6*A001399(n - 6) = 6*A069905(n - 3) = 6*A211540(n - 1) counts strict 3-part compositions.
A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions.
A001399(n - 6) = A069905(n - 3) = A211540(n - 1) counts strict 3-part partitions.
A001523 counts unimodal compositions.
A007052 counts unimodal patterns.
A011782 counts unimodal permutations.
A115981 counts non-unimodal compositions.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Triples are A014311, with strict case A337453.
- Sum is A070939.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Heinz number is A333219.
- Combinatory separations are counted by A334030.
- Non-unimodal compositions are A335373.
- Non-co-unimodal compositions are A335374.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],Length[stc[#]]==3&&!MatchQ[stc[#],{x_,y_,z_}/;x>y
    				

Formula

Complement of A335373 in A014311.

A337460 Numbers k such that the k-th composition in standard order is a non-unimodal triple.

Original entry on oeis.org

22, 38, 44, 70, 76, 88, 134, 140, 148, 152, 176, 262, 268, 276, 280, 296, 304, 352, 518, 524, 532, 536, 552, 560, 592, 608, 704, 1030, 1036, 1044, 1048, 1064, 1072, 1096, 1104, 1120, 1184, 1216, 1408, 2054, 2060, 2068, 2072, 2088, 2096, 2120, 2128, 2144, 2192
Offset: 1

Views

Author

Gus Wiseman, Sep 18 2020

Keywords

Comments

These are triples matching the pattern (2,1,2), (3,1,2), or (2,1,3).
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding triples begins:
      22: (2,1,2)     296: (3,2,4)    1048: (6,1,4)
      38: (3,1,2)     304: (3,1,5)    1064: (5,2,4)
      44: (2,1,3)     352: (2,1,6)    1072: (5,1,5)
      70: (4,1,2)     518: (7,1,2)    1096: (4,3,4)
      76: (3,1,3)     524: (6,1,3)    1104: (4,2,5)
      88: (2,1,4)     532: (5,2,3)    1120: (4,1,6)
     134: (5,1,2)     536: (5,1,4)    1184: (3,2,6)
     140: (4,1,3)     552: (4,2,4)    1216: (3,1,7)
     148: (3,2,3)     560: (4,1,5)    1408: (2,1,8)
     152: (3,1,4)     592: (3,2,5)    2054: (9,1,2)
     176: (2,1,5)     608: (3,1,6)    2060: (8,1,3)
     262: (6,1,2)     704: (2,1,7)    2068: (7,2,3)
     268: (5,1,3)    1030: (8,1,2)    2072: (7,1,4)
     276: (4,2,3)    1036: (7,1,3)    2088: (6,2,4)
     280: (4,1,4)    1044: (6,2,3)    2096: (6,1,5)
		

Crossrefs

A000212 counts unimodal triples.
A000217(n - 2) counts 3-part compositions.
A001399(n - 3) counts 3-part partitions.
A001399(n - 6) counts 3-part strict partitions.
A001399(n - 6)*2 counts non-unimodal 3-part strict compositions.
A001399(n - 6)*4 counts unimodal 3-part strict compositions.
A001399(n - 6)*6 counts 3-part strict compositions.
A001523 counts unimodal compositions.
A001840 counts non-unimodal triples.
A059204 counts non-unimodal permutations.
A115981 counts non-unimodal compositions.
A328509 counts non-unimodal patterns.
A337459 ranks unimodal triples.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Triples are A014311.
- Sum is A070939.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Heinz number is A333219.
- Non-unimodal compositions are A335373.
- Non-co-unimodal compositions are A335374.
- Strict triples are A337453.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,1000],Length[stc[#]]==3&&MatchQ[stc[#],{x_,y_,z_}/;x>y
    				

Formula

Intersection of A014311 and A335373.

A386848 Array read by descending antidiagonals:T(n,k) is the number of ways to partition n X n X n cube into k noncongruent cuboids excluding strict cuboids.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 2, 1, 0, 0, 1, 3, 0, 2, 1, 0, 0, 1, 3, 4, 1, 3, 1, 0, 0, 0, 1, 10, 6, 1, 3, 1, 0, 0, 0, 6, 9, 19, 6, 2, 4, 1, 0, 0, 0, 5, 34, 24, 30, 9, 3, 4, 1, 0, 0, 0, 0, 78, 37, 47, 44, 8, 4, 5, 1, 0, 0, 0, 0, 93
Offset: 1

Views

Author

Janaka Rodrigo, Aug 05 2025

Keywords

Comments

A strict cuboid is a cuboid with all dimensions different to each other.
The partitions here must be valid packings of the n X n X n cube, hence T(n,k) is generally less than the number of partitions of n^3 into distinct cuboids (x,y,z) with 1 <= x,y,z <= n and volume x*y*z excluding x != y != z.

Examples

			1    0    0    0    0
1    0    0    0    0
1    1    0    2    1
1    1    0    3    3
1    2    0    4   10
1    2    1    6   19
1    3    1    6   30
1    3    2    9   44
1    4    3    8   64
1    4    4    13  84
		

Crossrefs

Cf. A386296.
Columns: A004526(k=2), A211540(k=3), A386846(k=4), A386847(k=5).

Formula

T(n,1) = 1,
T(n,k) = 0 for k > n^3.

Extensions

More terms from Sean A. Irvine, Aug 05 2025
Previous Showing 21-25 of 25 results.