cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 66 results. Next

A317717 Uniform relatively prime tree numbers. Matula-Goebel numbers of uniform relatively prime rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 22, 26, 29, 30, 31, 32, 33, 34, 35, 36, 38, 41, 42, 43, 47, 51, 53, 55, 58, 59, 62, 64, 66, 67, 70, 77, 78, 79, 82, 85, 86, 93, 94, 95, 100, 101, 102, 105, 106, 109, 110, 113, 114, 118, 119, 123, 127, 128
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a uniform relatively prime tree number iff either n = 1 or n is a prime number whose prime index is a uniform relatively prime tree number, or n is a power of a squarefree number whose prime indices are relatively prime and are themselves uniform relatively prime tree numbers. A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[SameQ@@FactorInteger[n][[All,2]],GCD@@PrimePi/@FactorInteger[n][[All,1]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[200],rupQ]

A331933 Number of semi-lone-child-avoiding rooted trees with at most one distinct non-leaf branch directly under any vertex.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 12, 18, 33, 52, 90, 142, 242, 384, 639, 1028, 1688, 2716, 4445, 7161, 11665, 18839, 30595, 49434, 80199, 129637, 210079, 339750, 550228, 889978, 1440909, 2330887, 3772845, 6103823, 9878357, 15982196, 25863454, 41845650, 67713550, 109559443
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.

Examples

			The a(1) = 1 through a(8) = 18 trees:
  o  (o)  (oo)  (ooo)   (oooo)    (ooooo)    (oooooo)
                (o(o))  (o(oo))   (o(ooo))   (o(oooo))
                        (oo(o))   (oo(oo))   (oo(ooo))
                        ((o)(o))  (ooo(o))   (ooo(oo))
                                  (o(o)(o))  (oooo(o))
                                  (o(o(o)))  ((oo)(oo))
                                             (o(o(oo)))
                                             (o(oo(o)))
                                             (oo(o)(o))
                                             (oo(o(o)))
                                             ((o)(o)(o))
                                             (o((o)(o)))
		

Crossrefs

Not requiring lone-child-avoidance gives A320222.
The non-semi version is A320268.
Matula-Goebel numbers of these trees are A331936.
Achiral trees are A003238.
Semi-identity trees are A306200.
Numbers S with at most one distinct prime index in S are A331912.
Semi-lone-child-avoiding rooted trees are A331934.

Programs

  • Mathematica
    sseo[n_]:=Switch[n,1,{{}},2,{{{}}},_,Join@@Function[c,Select[Union[Sort/@Tuples[sseo/@c]],Length[Union[DeleteCases[#,{}]]]<=1&]]/@Rest[IntegerPartitions[n-1]]];
    Table[Length[sseo[n]],{n,10}]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(i=2, n-2, ((n-1)\i)*v[i])); v} \\ Andrew Howroyd, Feb 09 2020

Formula

a(n) = 1 + Sum_{i=2..n-2} floor((n-1)/i)*a(i). - Andrew Howroyd, Feb 09 2020

Extensions

Terms a(31) and beyond from Andrew Howroyd, Feb 09 2020

A184155 The Matula-Goebel number of rooted trees having all leaves at the same level.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 21, 23, 25, 27, 31, 32, 49, 53, 57, 59, 63, 64, 67, 73, 81, 83, 85, 97, 103, 115, 121, 125, 127, 128, 131, 133, 147, 159, 171, 189, 227, 241, 243, 256, 269, 277, 289, 307, 311, 331, 335, 343, 361, 365, 367, 371, 391, 393, 399, 419, 425, 431, 439, 441, 477
Offset: 1

Views

Author

Emeric Deutsch, Oct 07 2011

Keywords

Comments

The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
The sequence is infinite.

Examples

			7 is in the sequence because the rooted tree with Matula-Goebel number 7 is the rooted tree Y, having all leaves at level 2.
2^m is in the sequence for each positive integer m because the rooted tree with Matula-Goebel number 2^m is a star with m edges.
From _Gus Wiseman_, Mar 30 2018: (Start)
Sequence of trees begins:
01 o
02 (o)
03 ((o))
04 (oo)
05 (((o)))
07 ((oo))
08 (ooo)
09 ((o)(o))
11 ((((o))))
16 (oooo)
17 (((oo)))
19 ((ooo))
21 ((o)(oo))
23 (((o)(o)))
25 (((o))((o)))
27 ((o)(o)(o))
31 (((((o)))))
(End)
		

References

  • F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
  • I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
  • I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
  • D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.

Crossrefs

Programs

  • Maple
    with(numtheory): P := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then sort(expand(x*P(pi(n)))) else sort(P(r(n))+P(s(n))) end if end proc: A := {}: for n to 500 do if degree(numer(subs(x = 1/x, P(n)))) = 0 then A := `union`(A, {n}) else  end if end do: A;
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    dep[n_]:=If[n===1,0,1+Max@@dep/@primeMS[n]];
    rnkQ[n_]:=And[SameQ@@dep/@primeMS[n],And@@rnkQ/@primeMS[n]];
    Select[Range[2000],rnkQ] (* Gus Wiseman, Mar 30 2018 *)

Formula

In A184154 one constructs for each n the generating polynomial P(n,x) of the leaves of the rooted tree with Matula-Goebel number n, according to their levels. The Maple program finds those n (between 1 and 500) for which P(n,x) is a monomial.

A298120 Matula-Goebel numbers of rooted trees in which all positive outdegrees are odd.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 12, 18, 19, 20, 27, 30, 31, 32, 37, 44, 45, 48, 50, 61, 66, 67, 71, 72, 75, 76, 80, 99, 103, 108, 110, 113, 114, 120, 124, 125, 127, 128, 131, 148, 157, 162, 165, 171, 176, 180, 186, 190, 192, 193, 197, 200, 222, 223, 229, 242, 243, 244, 264
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2018

Keywords

Examples

			Sequence of trees begins:
1  o
2  (o)
3  ((o))
5  (((o)))
8  (ooo)
11 ((((o))))
12 (oo(o))
18 (o(o)(o))
19 ((ooo))
20 (oo((o)))
27 ((o)(o)(o))
30 (o(o)((o)))
31 (((((o)))))
32 (ooooo)
37 ((oo(o)))
44 (oo(((o))))
45 ((o)(o)((o)))
48 (oooo(o))
50 (o((o))((o)))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    otQ[n_]:=Or[n===1,With[{m=primeMS[n]},OddQ@Length@m&&And@@otQ/@m]];
    Select[Range[1000],otQ]

A317711 Numbers that are not uniform tree numbers.

Original entry on oeis.org

12, 18, 20, 24, 28, 37, 40, 44, 45, 48, 50, 52, 54, 56, 60, 61, 63, 68, 71, 72, 74, 75, 76, 80, 84, 88, 89, 90, 92, 96, 98, 99, 104, 107, 108, 111, 112, 116, 117, 120, 122, 124, 126, 132, 135, 136, 140, 142, 144, 147, 148, 150, 152, 153, 156, 157, 160, 162
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a uniform tree number iff either n = 1 or n is a power of a squarefree number whose prime indices are also uniform tree numbers. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of non-uniform tree numbers together with their Matula-Goebel trees begins:
  12: (oo(o))
  18: (o(o)(o))
  20: (oo((o)))
  24: (ooo(o))
  28: (oo(oo))
  37: ((oo(o)))
  40: (ooo((o)))
  44: (oo(((o))))
  45: ((o)(o)((o)))
  48: (oooo(o))
  50: (o((o))((o)))
  52: (oo(o(o)))
  54: (o(o)(o)(o))
  56: (ooo(oo))
  60: (oo(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,And[SameQ@@FactorInteger[n][[All,2]],And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]];
    Select[Range[100],!rupQ[#]&]

A297571 Matula-Goebel numbers of fully unbalanced rooted trees.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 15, 22, 26, 29, 30, 31, 33, 39, 41, 47, 55, 58, 62, 65, 66, 78, 79, 82, 87, 93, 94, 101, 109, 110, 113, 123, 127, 130, 137, 141, 145, 155, 158, 165, 167, 174, 179, 186, 195, 202, 205, 211, 218, 226, 235, 237, 246, 254, 257, 271, 274
Offset: 1

Views

Author

Gus Wiseman, Dec 31 2017

Keywords

Comments

An unlabeled rooted tree is fully unbalanced if either (1) it is a single node, or (2a) every branch has a different number of nodes and (2b) every branch is fully unbalanced also. The number of fully unbalanced trees with n nodes is A032305(n).
The first finitary number (A276625) not in this sequence is 143.

Examples

			Sequence of fully unbalanced trees begins:
   1 o
   2 (o)
   3 ((o))
   5 (((o)))
   6 (o(o))
  10 (o((o)))
  11 ((((o))))
  13 ((o(o)))
  15 ((o)((o)))
  22 (o(((o))))
  26 (o(o(o)))
  29 ((o((o))))
  30 (o(o)((o)))
  31 (((((o)))))
  33 ((o)(((o))))
  39 ((o)(o(o)))
  41 (((o(o))))
  47 (((o)((o))))
		

Crossrefs

Programs

  • Mathematica
    nn=2000;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    MGweight[n_]:=If[n===1,1,1+Total[Cases[FactorInteger[n],{p_,k_}:>k*MGweight[PrimePi[p]]]]];
    imbalQ[n_]:=Or[n===1,With[{m=primeMS[n]},And[UnsameQ@@MGweight/@m,And@@imbalQ/@m]]];
    Select[Range[nn],imbalQ]

A298424 Matula-Goebel numbers of rooted trees in which all positive outdegrees are the same.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 11, 14, 16, 31, 32, 49, 64, 76, 86, 127, 128, 256, 301, 424, 454, 512, 709, 722, 886, 1024, 1532, 1589, 1849, 2048, 2096, 3101, 3986, 4096, 5381, 6418, 6859, 8192, 9761, 9952, 11236, 13766, 13951, 14554, 16384, 19049, 21884, 22463, 23512
Offset: 1

Views

Author

Gus Wiseman, Jan 19 2018

Keywords

Examples

			Sequence of trees begins:
1   o
2   (o)
3   ((o))
4   (oo)
5   (((o)))
8   (ooo)
11  ((((o))))
14  (o(oo))
16  (oooo)
31  (((((o)))))
32  (ooooo)
49  ((oo)(oo))
64  (oooooo)
76  (oo(ooo))
86  (o(o(oo)))
127 ((((((o))))))
128 (ooooooo)
256 (oooooooo)
301 ((oo)(o(oo)))
424 (ooo(oooo))
454 (o((oo)(oo)))
512 (ooooooooo)
709 (((((((o)))))))
722 (o(ooo)(ooo))
886 (o(o(o(oo))))
		

Crossrefs

Programs

  • Mathematica
    MGtree[n_]:=If[n===1,{},MGtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    soQ[n_]:=Or[n===1,SameQ@@Length/@Cases[MGtree[n],{},{0,Infinity}]];
    Select[Range[1000],soQ]

A301343 Regular triangle where T(n,k) is the number of planted achiral (or generalized Bethe) trees with n nodes and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 3, 2, 2, 1, 1, 0, 1, 3, 2, 2, 1, 1, 1, 0, 1, 4, 2, 4, 1, 2, 1, 1, 0, 1, 4, 3, 4, 1, 3, 1, 1, 1, 0, 1, 5, 3, 6, 2, 4, 1, 2, 1, 1, 0, 1, 5, 3, 6, 2, 4, 1, 2, 1, 1, 1, 0, 1, 6, 4, 9, 2, 7, 1, 4, 2, 2, 1, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Examples

			Triangle begins:
1
1  0
1  1  0
1  1  1  0
1  2  1  1  0
1  2  1  1  1  0
1  3  2  2  1  1  0
1  3  2  2  1  1  1  0
1  4  2  4  1  2  1  1  0
1  4  3  4  1  3  1  1  1  0
1  5  3  6  2  4  1  2  1  1  0
The T(9,4) = 4 planted achiral trees: (((((oooo))))), ((((oo)(oo)))), (((oo))((oo))), ((o)(o)(o)(o)).
		

Crossrefs

Row sums are A003238. A version without the zeroes or first row is A214575.

Programs

  • Mathematica
    tri[n_,k_]:=If[k===1,1,If[k>=n,0,Sum[tri[n-k,d],{d,Divisors[k]}]]];
    Table[tri[n,k],{n,10},{k,n}]

Formula

T(n,1) = 1, T(n,k) = 0 if n <= k, otherwise T(n,k) = Sum_{d|k} T(n - k, d).

A317882 Number of free pure achiral multifunctions (with empty expressions allowed) with one atom and n positions.

Original entry on oeis.org

1, 1, 2, 5, 12, 31, 79, 211, 564, 1543, 4259, 11899, 33526, 95272, 272544, 784598, 2270888, 6604900, 19293793, 56581857, 166523462, 491674696, 1455996925, 4323328548, 12869353254, 38396655023, 114803257039, 343932660450, 1032266513328, 3103532577722
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2018

Keywords

Comments

A free pure achiral multifunction (with empty expressions allowed) (AME) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g, ..., g] where h and g are AMEs. The number of positions in an AME is the number of brackets [...] plus the number of o's.
Also the number of achiral Mathematica expressions with one atom and n positions.

Examples

			The a(5) = 12 AMEs:
  o[o[o]]
  o[o][o]
  o[o[][]]
  o[o,o,o]
  o[][o[]]
  o[][o,o]
  o[][][o]
  o[o[]][]
  o[o,o][]
  o[][o][]
  o[o][][]
  o[][][][]
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n==1,1,Sum[a[k]*If[k==n-1,1,Sum[a[d],{d,Divisors[n-k-1]}]],{k,n-1}]];
    Array[a,12]
  • PARI
    seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*(1 + sum(k=1, n-2, subst(p + O(x^(n\k+1)), x, x^k)) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
    
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=v[n-1] + sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, v[d]))); v} \\ Andrew Howroyd, Aug 19 2018

Formula

a(1) = 1; a(n > 1) = a(n - 1) + Sum_{0 < k < n - 1} a(k) * Sum_{d|(n - k - 1)} a(d).

Extensions

Terms a(13) and beyond from Andrew Howroyd, Aug 19 2018

A317883 Number of free pure achiral multifunctions with one atom and n positions.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 10, 17, 37, 70, 150, 299, 634, 1311, 2786, 5879, 12584, 26904, 58005, 125242, 271819, 591297, 1290976, 2825170, 6199964, 13635749, 30057649, 66386206, 146903289, 325637240, 723024160, 1607805207, 3580476340, 7984266625, 17827226469
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2018

Keywords

Comments

A free pure achiral multifunction (PAM) is either (case 1) the leaf symbol "o", or (case 2) a nonempty expression of the form h[g, ..., g] where h and g are PAMs. The number of positions in a PAM is the number of brackets [...] plus the number of o's.

Examples

			The a(7) = 10 PAMs:
  o[o[o[o]]]
  o[o[o][o]]
  o[o][o[o]]
  o[o[o]][o]
  o[o][o][o]
  o[o[o,o,o]]
  o[o][o,o,o]
  o[o,o][o,o]
  o[o,o,o][o]
  o[o,o,o,o,o]
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n==1,1,Sum[a[k]*Sum[a[d],{d,Divisors[n-k-1]}],{k,n-2}]];
    Array[a,12]
  • PARI
    seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*sum(k=1, n-2, subst(p + O(x^(n\k+1)), x, x^k) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
    
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, v[d]))); v} \\ Andrew Howroyd, Aug 19 2018

Formula

a(1) = 1; a(n > 1) = Sum_{0 < k < n - 1} a(k) * Sum_{d|(n - k - 1)} a(d).
G.f. A(x) satisfies: A(x) = x * (1 + A(x) * Sum_{k>=1} A(x^k)). - Ilya Gutkovskiy, May 03 2019

Extensions

Terms a(13) and beyond from Andrew Howroyd, Aug 19 2018
Previous Showing 21-30 of 66 results. Next