cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A330964 Array read by antidiagonals: A(n,k) is the number of sets of nonempty subsets of a k-element set where each element appears in at most n subsets.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 15, 8, 2, 1, 1, 52, 59, 8, 2, 1, 1, 203, 652, 109, 8, 2, 1, 1, 877, 9736, 3623, 128, 8, 2, 1, 1, 4140, 186478, 200522, 11087, 128, 8, 2, 1, 1, 21147, 4421018, 16514461, 2232875, 21380, 128, 8, 2, 1, 1, 115975, 126317785, 1912959395, 775098224, 15312665, 29228, 128, 8, 2, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 04 2020

Keywords

Comments

A(n,k) is the number of binary matrices with k columns and any number of nonzero rows with rows in decreasing order and at most n ones in every column.

Examples

			Array begins:
==================================================================
n\k | 0 1 2   3     4         5             6                7
----+-------------------------------------------------------------
  0 | 1 1 1   1     1         1             1                1 ...
  1 | 1 2 5  15    52       203           877             4140 ...
  2 | 1 2 8  59   652      9736        186478          4421018 ...
  3 | 1 2 8 109  3623    200522      16514461       1912959395 ...
  4 | 1 2 8 128 11087   2232875     775098224     428188962261 ...
  5 | 1 2 8 128 21380  15312665   22165394234   57353442460140 ...
  6 | 1 2 8 128 29228  70197998  422059040480 5051078354829005 ...
  7 | 1 2 8 128 32297 227731312 5686426671375 ...
      ...
The T(1,2) = 5 set systems are:
  {},
  {{1,2}},
  {{1,2}, {2}},
  {{1},{1,2}},
  {{1}, {2}}.
		

Crossrefs

Rows n=0..4 are A000012, A000110, A178165, A178171, A178173.
Main diagonal gives A374573.

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); (vecsum(WeighT(v)) + 1)^k/prod(i=1, #v, i^v[i]*v[i]!)}
    T(n, k)={my(m=n*k+1, q=Vec(exp(intformal(O(x^m) - x^n/(1-x)))/(1+x))); if(n==0, 1, (-1)^m*sum(j=0, m, my(s=0); forpart(p=j, s+=(-1)^#p*D(p, n, k), [1, n]); s*q[#q-j])/2)}

Formula

Lim_{n->oo} A(n,k) = 2^k.

A322487 Number of (3*n) X n matrices with nonnegative integer entries and each column sum being 3 up to permutation of rows.

Original entry on oeis.org

1, 3, 31, 686, 27036, 1688360, 154703688, 19692332568, 3342458334775, 732812082630803, 202322386045180686, 68898094282978653925, 28443422251718020038049, 14029033632468285836567998, 8164217197799501761637725983, 5545466507405459243366712102466
Offset: 0

Views

Author

Andrew Howroyd, Dec 11 2018

Keywords

Comments

Also number of multiset partitions of [1,1,1,2,2,2,...,n,n,n] into nonempty multisets. - Marko Riedel, Nov 29 2022

Examples

			a(1) = 3 because up to permutations of rows there are 3 column vectors with sum 3: [1, 1, 1], [2, 1, 0] and [3, 0, 0].
		

Crossrefs

Row n=3 of A219727.

A322784 Number of multiset partitions of uniform multisets of size n whose union is an initial interval of positive integers.

Original entry on oeis.org

1, 1, 4, 8, 29, 59, 311, 892, 4983, 21863, 126813, 678626, 4446565, 27644538, 195561593, 1384705697, 10613378402, 82864870101, 686673571479, 5832742205547, 51897707277698, 474889512098459, 4514467567213008, 44152005855085601, 446355422070799305, 4638590359349994120
Offset: 0

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Comments

A multiset is uniform if all multiplicities are equal.
Also the number of factorizations into factors > 1 of primorial powers k in A100778 with sum of prime indices A056239(k) equal to n.
a(n) is the number of nonequivalent nonnegative integer matrices without zero rows or columns with equal column sums and total sum n up to permutation of rows. - Andrew Howroyd, Jan 11 2020

Examples

			The a(1) = 1 through a(4) = 29 multiset partitions:
  {{1}}   {{1,1}}     {{1,1,1}}       {{1,1,1,1}}
          {{1,2}}     {{1,2,3}}       {{1,1,2,2}}
         {{1},{1}}   {{1},{1,1}}      {{1,2,3,4}}
         {{1},{2}}   {{1},{2,3}}     {{1},{1,1,1}}
                     {{2},{1,3}}     {{1,1},{1,1}}
                     {{3},{1,2}}     {{1},{1,2,2}}
                    {{1},{1},{1}}    {{1,1},{2,2}}
                    {{1},{2},{3}}    {{1,2},{1,2}}
                                     {{1},{2,3,4}}
                                     {{1,2},{3,4}}
                                     {{1,3},{2,4}}
                                     {{1,4},{2,3}}
                                     {{2},{1,1,2}}
                                     {{2},{1,3,4}}
                                     {{3},{1,2,4}}
                                     {{4},{1,2,3}}
                                    {{1},{1},{1,1}}
                                    {{1},{1},{2,2}}
                                    {{1},{2},{1,2}}
                                    {{1},{2},{3,4}}
                                    {{1},{3},{2,4}}
                                    {{1},{4},{2,3}}
                                    {{2},{2},{1,1}}
                                    {{2},{3},{1,4}}
                                    {{2},{4},{1,3}}
                                    {{3},{4},{1,2}}
                                   {{1},{1},{1},{1}}
                                   {{1},{1},{2},{2}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • Mathematica
    u[n_,k_]:=u[n,k]=If[n==1,1,Sum[u[n/d,d],{d,Select[Rest[Divisors[n]],#<=k&]}]];
    Table[Sum[u[Array[Prime,d,1,Times]^(n/d),Array[Prime,d,1,Times]^(n/d)],{d,Divisors[n]}],{n,12}]

Formula

a(n) = Sum_{d|n} A001055(A002110(n/d)^d).
a(n) = Sum_{d|n} A219727(n/d, d). - Andrew Howroyd, Jan 11 2020

Extensions

a(14)-a(15) from Alois P. Heinz, Jan 16 2019
Terms a(16) and beyond from Andrew Howroyd, Jan 11 2020

A256384 Number A(n,k) of factorizations of m^n into at most n factors, where m is a product of exactly k distinct primes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 14, 19, 5, 1, 1, 1, 41, 171, 74, 7, 1, 1, 1, 122, 1675, 1975, 248, 11, 1, 1, 1, 365, 16683, 64182, 20096, 814, 15, 1, 1, 1, 1094, 166699, 2203215, 2213016, 187921, 2457, 22, 1, 1, 1, 3281, 1666731, 76727374, 268446852, 69406700, 1609727, 7168, 30, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 27 2015

Keywords

Comments

A(n,k) is also the number of k-partite partitions of (n)^k into at most n k-tuples. A(2,2) = 5: [(2,2)], [(2,1),(0,1)], [(2,0),(0,2)], [(1,2),(1,0)], [(1,1),(1,1)].

Examples

			A(2,2) = 5: (2*3)^2 = 36 has 5 factorizations into at most 2 factors: 36, 2*18, 3*12, 4*9, 6*6.
Square array A(n,k) begins:
  1, 1,   1,     1,       1,         1, ...
  1, 1,   1,     1,       1,         1, ...
  1, 2,   5,    14,      41,       122, ...
  1, 3,  19,   171,    1675,     16683, ...
  1, 5,  74,  1975,   64182,   2203215, ...
  1, 7, 248, 20096, 2213016, 268446852, ...
		

Crossrefs

Columns k=0-3 give: A000012, A000041, A254686, A254811.
Rows n=0+1,2-3 give: A000012, A007051, A256493.
Cf. A219727.

Programs

  • Mathematica
    b[n_, k_, i_] := b[n, k, i] = If[n>k, 0, 1] + If[PrimeQ[n] || i<2, 0, Sum[ If[d > k, 0, b[n/d, d, i-1]], {d, Divisors[n][[2 ;; -2]]}]]; A[0, ] = 1; A[1, ] = 1; A[, 0] = 1; A[n, k_] := With[{t = Times @@ Prime[ Range[k] ]}, b[t^n, t^n, n]]; Table[diag = Table[A[n-k, k], {k, n, 0, -1}]; Print[ diag]; diag, {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)

A219678 Number of tripartite partitions of (n,n,n) into triples.

Original entry on oeis.org

1, 5, 66, 686, 6721, 58616, 476781, 3608348, 25781989, 174810494, 1132328205, 7037425172, 42140788751, 243918472743, 1368647208107, 7462686474948, 39626100989332, 205283558905562, 1039263967957447, 5149048724566723, 24998922141116056, 119073277412589351
Offset: 0

Views

Author

Alois P. Heinz, Nov 26 2012

Keywords

Comments

a(n) is also the number of factorizations of m^n where m is a product of 3 distinct primes. a(1) = 5: (2*3*5)^1 = 30 has 5 factorizations: 30, 5*6, 3*10, 2*3*5, 2*15.

Examples

			a(1) = 5: [(1,1,1)], [(1,1,0),(0,0,1)], [(1,0,1),(0,1,0)], [(1,0,0),(0,1,0),(0,0,1)], [(0,1,1),(1,0,0)].
		

Crossrefs

Column k=3 of A219727.
Cf. A219560.

Extensions

More terms from Sean A. Irvine, Aug 14 2014

A322786 Irregular triangle read by rows where T(n,k) is the number of multiset partitions of a multiset with d = A027750(n,k) copies of each integer from 1 to n/d.

Original entry on oeis.org

1, 2, 2, 5, 3, 15, 9, 5, 52, 7, 203, 66, 31, 11, 877, 15, 4140, 712, 109, 22, 21147, 686, 30, 115975, 10457, 339, 42, 678570, 56, 4213597, 198091, 27036, 6721, 1043, 77, 27644437, 101, 190899322, 4659138, 2998, 135, 1382958545, 1688360, 58616, 176
Offset: 1

Views

Author

Gus Wiseman, Dec 26 2018

Keywords

Examples

			Triangle begins:
        1
        2       2
        5       3
       15       9       5
       52       7
      203      66      31      11
      877      15
     4140     712     109      22
    21147     686      30
   115975   10457     339      42
   678570      56
  4213597  198091   27036    6721    1043      77
For example, row 4 counts the following multiset partitions.
  {{1,2,3,4}}        {{1,1,2,2}}        {{1,1,1,1}}
  {{1},{2,3,4}}      {{1},{1,2,2}}      {{1},{1,1,1}}
  {{1,2},{3,4}}      {{1,1},{2,2}}      {{1,1},{1,1}}
  {{1,3},{2,4}}      {{1,2},{1,2}}      {{1},{1},{1,1}}
  {{1,4},{2,3}}      {{2},{1,1,2}}      {{1},{1},{1},{1}}
  {{2},{1,3,4}}      {{1},{1},{2,2}}
  {{3},{1,2,4}}      {{1},{2},{1,2}}
  {{4},{1,2,3}}      {{2},{2},{1,1}}
  {{1},{2},{3,4}}    {{1},{1},{2},{2}}
  {{1},{3},{2,4}}
  {{1},{4},{2,3}}
  {{2},{3},{1,4}}
  {{2},{4},{1,3}}
  {{3},{4},{1,2}}
  {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • Mathematica
    u[n_,k_]:=u[n,k]=If[n==1,1,Sum[u[n/d,d],{d,Select[Rest[Divisors[n]],#<=k&]}]];
    Table[Table[u[Array[Prime,n/d,1,Times]^d,Array[Prime,n/d,1,Times]^d],{d,Divisors[n]}],{n,10}]
  • PARI
    \\ needs T(n,k) from A219727.
    Row(n)={[T(d,n/d) | d<-divisors(n)]}
    { for(n=1, 12, print(Row(n))) } \\ Andrew Howroyd, Jan 11 2020

Formula

T(n,k) = A001055(A002110(n/d)^d), where d = A027750(n,k).
T(n,k) = A219727(d, n/d), where d = A027750(n, k). - Andrew Howroyd, Jan 11 2020

Extensions

Edited by Peter Munn, Mar 05 2025

A358781 Number of multiset partitions of [1,1,1,1,2,2,2,2,...,n,n,n,n] into nonempty multisets.

Original entry on oeis.org

1, 5, 109, 6721, 911838, 231575143, 99003074679, 66106443797808, 65197274052335504, 90954424202936106523, 173398227073956386079670, 439196881673194611574668282, 1443741072199958276777413001395
Offset: 0

Views

Author

Marko Riedel, Nov 29 2022

Keywords

Comments

Generalization of Bell numbers to multiset partitions with m instances each of n different elements, here m=4.

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Row n=4 of A219727.

A322488 Number of factorizations of the n-th power of the product of the first n primes.

Original entry on oeis.org

1, 1, 9, 686, 911838, 27119992809, 23970534519938280, 790361842548583118561351, 1186709456459520739315771458325336, 96786580459441954551347685958203256606168610, 502265575410823018475962732653887865889973989497971475955
Offset: 0

Views

Author

Alois P. Heinz, Dec 11 2018

Keywords

Comments

Also number of n-partite partitions of {n}^n into n-tuples. a(2) = 9: [(2,2)], [(2,1),(0,1)], [(2,0),(0,2)], [(2,0),(0,1),(0,1)], [(1,2),(1,0)], [(1,1),(1,1)], [(1,1),(1,0),(0,1)], [(1,0),(1,0),(0,2)], [(1,0),(1,0),(0,1),(0,1)].
Also number of partitions of the multiset with n copies each of 1,2,...,n. a(2) = 9: 1122, 11|22, 12|12, 1|122, 112|2, 11|2|2, 1|1|22, 1|12|2, 1|1|2|2.

Examples

			a(2) = 9: (2*3)^2 = A002110(2)^2 = 36 has 9 factorizations: 36, 3*12, 4*9, 3*3*4, 2*18, 6*6, 2*3*6, 2*2*9, 2*2*3*3.
		

Crossrefs

Main diagonal of A219727.

Formula

a(n) = A001055(A181555(n)) = A001055(A002110(n)^n).

Extensions

a(10) from Andrew Howroyd, Dec 11 2018
Previous Showing 11-18 of 18 results.