A181449
Numbers k such that 7 is the largest prime factor of k^2 - 1.
Original entry on oeis.org
6, 8, 13, 15, 29, 41, 55, 71, 97, 99, 127, 244, 251, 449, 4801, 8749
Offset: 1
-
[ n: n in [2..9000] | m eq 7 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 17 2011
-
Select[Range[9000], FactorInteger[#^2-1][[-1, 1]]==7&]
-
is(n)=n=n^2-1; forprime(p=2, 5, n/=p^valuation(n, p)); n>1 && 7^valuation(n, 7)==n \\ Charles R Greathouse IV, Jul 01 2013
A181450
Numbers k such that 11 is the largest prime factor of k^2 - 1.
Original entry on oeis.org
10, 21, 23, 34, 43, 65, 76, 89, 109, 111, 197, 199, 241, 351, 485, 769, 881, 1079, 6049, 19601
Offset: 1
-
[ n: n in [2..20000] | m eq 11 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 18 2011
-
Select[Range[20000], FactorInteger[#^2-1][[-1, 1]]==11&]
-
is(n)=n=n^2-1; forprime(p=2, 7, n/=p^valuation(n, p)); n>1 && 11^valuation(n, 11)==n \\ Charles R Greathouse IV, Jul 01 2013
A181451
Numbers k such that 13 is the largest prime factor of k^2 - 1.
Original entry on oeis.org
12, 14, 25, 27, 51, 53, 64, 79, 129, 131, 155, 181, 209, 274, 287, 337, 391, 649, 701, 703, 727, 846, 1249, 1351, 1457, 1574, 2001, 3431, 4159, 8191, 8449, 13311, 21295, 246401
Offset: 1
-
[ n: n in [2..250000] | m eq 13 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // Klaus Brockhaus, Feb 18 2011
-
Select[Range[250000], FactorInteger[#^2-1][[-1, 1]]==13&]
-
is(n)=n=n^2-1; forprime(p=2, 11, n/=p^valuation(n, p)); n>1 && 13^valuation(n, 13)==n \\ Charles R Greathouse IV, Jul 01 2013
A379344
a(n) is the sum of all numbers k such that the greatest prime factor of k^2 - 1 is prime(n).
Original entry on oeis.org
3, 31, 310, 15055, 30433, 318914, 1378856, 41139929, 29628346, 706390476, 5330866189, 17573061167, 227644494516, 912323845104, 3312744735567, 6366920047986, 69033389180772, 89835379146224, 45938747179900, 564448183072697, 6856082910702485, 19187647510345764511, 56226662050090628, 357824287346707561, 139924756071743686
Offset: 1
A223703
Conjectured irregular triangle (with some rows blank) of numbers k such that prime(n) is the largest prime factor of k^3 - 1.
Original entry on oeis.org
2, 4, 3, 9, 16, 22, 18, 7, 11, 30, 5, 25, 67, 191, 10, 26, 100, 121, 211, 581, 676, 6, 36, 49, 79, 87, 165, 6205, 178, 13, 47, 501, 562, 29, 37, 68, 135, 163, 565, 900, 1369, 1712, 3446, 4624, 8, 64, 74, 81, 137, 373, 439, 1451, 1816, 2629, 7527, 39209
Offset: 1
Irregular triangle:
2: {},
3: {},
5: {},
7: {2, 4},
11: {},
13: {3, 9, 16, 22},
17: {18},
19: {7, 11},
23: {},
29: {30},
31: {5, 25, 67, 191},
37: {10, 26, 100, 121, 211, 581, 676},
41: {},
43: {6, 36, 49, 79, 87, 165},
47: {6205},
53: {},
59: {178},
61: {13, 47, 501, 562},
67: {29, 37, 68, 135, 163, 565, 900, 1369, 1712, 3446, 4624},
71: {},
73: {8, 64, 74, 81, 137, 373, 439, 1451, 1816, 2629, 7527, 39209}
Cf.
A175607 (largest number k such that the greatest prime factor of k^2-1 is prime(n)).
-
t = Table[FactorInteger[n^3 - 1][[-1,1]], {n, 2, 10^6}]; Table[1 + Flatten[Position[t, Prime[n]]], {n, 25}]
A223704
Conjectured irregular triangle (with some rows blank) of numbers k such that prime(n) is the largest prime factor of k^3 + 1.
Original entry on oeis.org
1, 2, 3, 5, 19, 4, 10, 17, 23, 8, 12, 31, 69, 6, 26, 68, 11, 27, 101, 122, 7, 37, 50, 80, 179, 582, 14, 48, 75, 563, 719, 2820, 4135, 30, 38, 164, 231, 440, 566, 901, 11093, 112925, 267167, 212, 9, 65, 374, 20303, 24, 56, 103, 293, 530, 656, 767, 868, 82, 2157
Offset: 1
Irregular triangle:
2: {1},
3: {2},
5: {},
7: {3, 5, 19},
11: {},
13: {4, 10, 17, 23},
17: {},
19: {8, 12, 31, 69},
23: {},
29: {},
31: {6, 26, 68},
37: {11, 27, 101},
41: {122},
43: {7, 37, 50, 80, 179},
47: {},
53: {582},
59: {},
61: {14, 48, 75, 563, 719, 2820, 4135},
67: {30, 38, 164, 231, 440, 566, 901, 11093, 112925, 267167},
71: {212},
73: {9, 65, 374, 20303},
79: {24, 56, 103, 293, 530, 656, 767, 868},
83: {82, 2157}.
Cf.
A175607 (largest number k such that the greatest prime factor of k^2-1 is prime(n)).
-
t = Table[FactorInteger[n^3 + 1][[-1,1]], {n, 10^6}]; Table[Flatten[Position[t, Prime[n]]], {n, 25}]
A223705
Least number k such that prime(n) is the largest divisor of k^2 + 1, or 0 if there is no such k.
Original entry on oeis.org
1, 0, 2, 0, 0, 5, 4, 0, 0, 12, 0, 6, 9, 0, 0, 23, 0, 11, 0, 0, 27, 0, 0, 34, 22, 10, 0, 0, 33, 15, 0, 0, 37, 0, 44, 0, 28, 0, 0, 80, 0, 19, 0, 81, 14, 0, 0, 0, 0, 107, 89, 0, 64, 0, 16, 0, 82, 0, 60, 53, 0, 138, 0, 0, 25, 114, 0, 148, 0, 136, 42, 0, 0, 104, 0, 0
Offset: 1
-
nn = 100; t = Table[0, {nn}]; Do[If[Mod[Prime[n], 4] == 3, t[[n]] = -1], {n, nn}]; n = 0; While[Times @@ t == 0, n++; s = FactorInteger[n^2 + 1][[-1, 1]]; p = PrimePi[s]; If[p <= nn && t[[p]] == 0, t[[p]] = n]]; Do[If[Mod[Prime[n], 4] == 3, t[[n]] = 0], {n, nn}]; t
A223706
Conjectured least number k such that prime(n) is the largest divisor of k^3 - 1, or 0 if there is no such k.
Original entry on oeis.org
0, 0, 0, 2, 0, 3, 18, 7, 0, 30, 5, 10, 0, 6, 6205, 0, 178, 13, 29, 0, 8, 23, 0, 0, 35, 102, 46, 429, 45, 0, 19, 263, 0, 42, 7600, 32, 12, 58, 1083163, 520, 0, 48, 880129, 84, 5320, 92, 14, 39, 13848, 94, 4195, 718, 15, 21085, 772, 502068, 5381, 28, 116, 5579256
Offset: 1
-
nn = 60; t = Table[0, {nn}]; ps = Prime[Range[nn]]; Do[num = n^3 - 1; j = 0; lastP = 0; While[num > 0 && j < nn, j++; p = ps[[j]]; While[Mod[num, p] == 0, lastP = j; num = num/p]];If[num == 1 && t[[lastP]] == 0, t[[lastP]] = n; Print[{lastP, n}]], {n, 10^7}]; t
A379345
Number of integers of the form k^2 - 1 whose greatest prime factor is at most prime(n).
Original entry on oeis.org
1, 5, 13, 29, 49, 83, 130, 202, 297, 423, 591, 799, 1061, 1404, 1837, 2344, 2978, 3777, 4753, 5899, 7338, 9036, 11118, 13489, 16223
Offset: 1
Comments