cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A111330 Let qf(a,q) = Product_{j >= 0} (1-a*q^j); g.f. is qf(q,q^4)/qf(q^3,q^4).

Original entry on oeis.org

1, -1, 0, 1, -1, -1, 2, 0, -2, 1, 1, -1, -1, 1, 2, -2, -2, 3, 1, -4, 0, 5, -1, -5, 2, 5, -4, -5, 6, 4, -6, -4, 7, 4, -10, -2, 12, 0, -13, 2, 13, -4, -14, 6, 17, -10, -17, 14, 15, -17, -15, 21, 15, -26, -13, 31, 9, -35, -5, 39, 2, -44, 3, 49, -12, -52, 21, 53, -27, -55, 35, 57, -47, -57, 59, 55, -69, -52, 80, 49, -95, -43, 110, 34, -122
Offset: 0

Views

Author

N. J. A. Sloane, Nov 09 2005

Keywords

Crossrefs

Formula

From Peter Bala, Nov 28 2020: (Start)
O.g.f.: A(x) = F(x)/G(x) where F(x) = Product_{k >= 0} 1 - x^(4*k+1) (see A284313) and G(x) = Product_{k >= 0} 1 - x^(4*k+3) (see A284316).
Continued fraction representations: A(x) = 1 - x/(1 + x^2 - x^3/(1 + x^4 - x^5/(1 + x^6 - ... ))).
A(x) = 1 - x/(1 - x^2*(x - 1)/(1 - x^5/(1 - x^4*(x^3 - 1)/(1 - x^9/(1 - x^6*(x^5 - 1)/(1 - ... )))))). Cf. A224704. (End)

A206737 G.f.: 1/(1 - x/(1 - x^4/(1 - x^7/(1 - x^10/(1 - x^13/(1 - x^16/(1 -...- x^(3*n-2)/(1 -...)))))))), a continued fraction.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 20, 28, 39, 54, 76, 107, 150, 210, 294, 412, 578, 811, 1137, 1593, 2233, 3131, 4390, 6155, 8629, 12097, 16959, 23777, 33336, 46737, 65524, 91863, 128790, 180563, 253149, 354912, 497581, 697602, 978031, 1371190, 1922395
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Comments

We have the simple continued fraction expansions (A(x) is the sequence o.g.f.): A(1/n) = [1; n - 2, 1, n^3 - 2, 1, n^4 - 2, 1, n^6 - 2, 1, n^7 - 2, 1, n^9 - 2, 1, n^10 - 2, 1, ...] for n >= 3 and A(-1/n) = [0; 1, n - 1, 1, n^3 - 1, n^4 - 1, 1, n^6 - 1, n^7 - 1, 1, n^9 - 1, n^10 - 1, 1, ...] for n >= 2. Cf. A005169, A111317 and A143951. - Peter Bala, Dec 15 2015

Examples

			G.f.: A(x) = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + ...
Simple continued fraction expansions: A(1/10) = 1.11112345816325284441923227158 ... = [1, 8, 1, 998, 1, 9998, 1, 999998, 1, 9999998, 1, 999999998, 1, 9999999998, 1, ...]; A(-1/10) = 0.909082643877542661578687284018 ... = [0, 1, 9, 1, 999, 9999, 1, 999999, 9999999, 1, 999999999, 9999999999, 1, ...]. - _Peter Bala_, Dec 15 2015
		

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(0) .. a(N)
    C:= [0,[1,1],seq([-x^i,1],i=1..N,3)]:
    S:= series(numtheory:-cfrac(C),x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Dec 28 2015
  • Mathematica
    max = 15; CF = 1+x*O[x]^max; M = Sqrt[max+1]//Floor; For[k=0, k <= M, k++, CF = 1/(1-x^(3M-3k+1)*CF)]; CoefficientList[CF, x] (* Jean-François Alcover, Dec 29 2015, adapted from PARI *)
    nmax = 50; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(3*Range[nmax + 1]-2)]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
  • PARI
    {a(n)=local(CF=1+x*O(x^n),M=sqrtint(n+1)); for(k=0, M, CF=1/(1-x^(3*M-3*k+1)*CF)); polcoeff(CF, n, x)}
    for(n=0,55,print1(a(n),", "))

Formula

a(n) ~ c * d^n, where d = 1.40198938377739909105003523518827... and c = 0.34165269320144328278000954698... - Vaclav Kotesovec, Aug 25 2017
From Peter Bala, Jul 03 2019: (Start)
O.g.f. as a ratio of q-series: N(q)/D(q), where N(q) = Sum_{n >= 0} (-1)^n*q^(3*n^2+n)/((1-q^3)*(1-q^6)*...*(1-q^(3*n))) and D(q) = Sum_{n >= 0} (-1)^n*q^(3*n^2-2*n)/((1-q^3)*(1-q^6)*...*(1-q^(3*n))). Cf. A143951, A224704 and A206738.
D(q) has a simple real zero at x = 0.7132721628.... The constants c and d quoted in the above asymptotic approximation for a(n) are given by d = 1/x and c = - N(x)/(x*D'(x)), where the prime indicates differentiation w.r.t. q. (End)

A206738 G.f.: 1/(1 - x^2/(1 - x^5/(1 - x^8/(1 - x^11/(1 - x^14/(1 - x^17/(1 -...- x^(3*n-1)/(1 -...)))))))), a continued fraction.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 4, 6, 7, 9, 11, 14, 18, 22, 29, 35, 46, 56, 73, 90, 116, 144, 184, 231, 292, 370, 465, 591, 742, 942, 1185, 1502, 1893, 2395, 3023, 3819, 4826, 6093, 7702, 9724, 12290, 15519, 19611, 24767, 31294, 39527, 49937, 63082
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2012

Keywords

Comments

We have the simple continued fraction expansions (A(x) is the sequence o.g.f.): A(1/n) = [1; n^2 - 2, 1, n^3 - 2, 1, n^5 - 2, 1, n^6 - 2, 1, n^8 - 2, 1, n^9 - 2, 1, n^11 - 2, 1, n^12 - 2, 1, ...] for n >= 2 and A(-1/n) = [ 1, n^2 - 1, n^3 - 1, 1, n^5 - 1, n^6 - 1, 1, n^8 - 1, n^9 - 1, 1, n^11 - 1, n^12 - 1, 1, ...] for n >= 2. Cf. A005169, A111317 and A143951. - Peter Bala, Dec 15 2015

Examples

			G.f.: A(x) = 1 + x^2 + x^4 + x^6 + x^7 + x^8 + 2*x^9 + x^10 + 3*x^11 + ...
Simple continued fraction expansions: A(1/2) = 1.34788543155288690684 ... = [1; 2, 1, 6, 1, 30, 1, 62, 1, 254, 1, 510, 1, 2046, 1, 4094, 1, ...] and A(-1/2) = 1.3199498363818812865 ... = [1; 3, 7, 1, 31, 63, 1, 255, 511, 1, 2047, 4095, 1, ...]. - _Peter Bala_, Dec 15 2015
		

Crossrefs

Programs

  • Maple
    N:= 100:
    C:= [0,[1,1],seq([-x^i,1],i=2..N,3)]:
    S:= series(numtheory:-cfrac(C),x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Feb 18 2024
  • Mathematica
    nmax = 60; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(3*Range[nmax + 1]-1)]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2017 *)
  • PARI
    {a(n)=local(CF=1+x*O(x^n),M=sqrtint(n+1)); for(k=0, M, CF=1/(1-x^(3*M-3*k+2)*CF)); polcoeff(CF, n, x)}
    for(n=0,55,print1(a(n),", "))

Formula

a(n) ~ c * d^n, where d = 1.26326802855134275222... and c = 0.16506173508242936... - Vaclav Kotesovec, Aug 25 2017
From Peter Bala, Jul 03 2019: (Start)
O.g.f. as a ratio of q series: N(q)/D(q), where N(q) = Sum_{n >= 0} (-1)^n*q^(3*n^2+2*n)/((1-q^3)*(1-q^6)*...*(1-q^(3*n))) and D(q) = Sum_{n >= 0} (-1)^n*q^(3*n^2-n)/((1-q^3)*(1-q^6)*...*(1-q^(3*n))). Cf. A143951, A224704 and A206737.
D(q) has a simple real zero at x = 0.79159764784576529644 .... The constants c and d quoted in the above asymptotic approximation are given by d = 1/x and c = - N(x)/(x*D'(x)), where the prime indicates differentiation w.r.t. q. (End)

A326792 Triangular array: T(n,k) equals the number of small Schröder paths such that the area between the path and the x-axis contains n up-triangles and k down-triangles; n >= 1, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 13, 8, 1, 1, 9, 25, 28, 11, 1, 1, 11, 41, 68, 51, 15, 1, 1, 13, 61, 136, 155, 86, 19, 1, 1, 15, 85, 240, 371, 314, 135, 24, 1, 1, 17, 113, 388, 763, 882, 585, 202, 29, 1, 1, 19, 145, 588, 1411, 2086, 1899, 1019, 290, 35, 1
Offset: 1

Views

Author

Peter Bala, Jul 25 2019

Keywords

Comments

Equivalent definition: T(n,k) equals the number of triangle stacks, as defined in A224704, containing n up-triangles and k down-triangles.
We define two types of plane triangles - up-triangles with vertices at the integer lattice points (x, y), (x+1, y+1) and (x+2, y) and down-triangles with vertices at the integer lattice points (x, y), (x-1, y+1) and (x+1, y+1). The area beneath a small Schröder path may be decomposed in a unique manner into a collection of up- and down-triangles.
To construct a triangle stack (of small Schröder type) we start with a horizontal row of k contiguous up-triangles forming the base row of the stack. Subsequent rows of the stack are formed by placing down-triangles in some, all or none of the spaces between the up-triangles of the previous row. Further up-triangles may be then be placed on these down-triangles and the process repeated. For an example, see the illustration in the Links section. There is an obvious bijective correspondence between triangle stacks with a base of m up-triangles and small Schröder paths of semilength m.

Examples

			Triangle begins
  n\k| 0   1   2   3   4   5   6   7  8   9
  - - - - - - - - - - - - - - - - - - - - -
   1 | 1
   2 | 1   1
   3 | 1   3   1
   4 | 1   5   5   1
   5 | 1   7  13   8   1
   6 | 1   9  25  28  11   1
   7 | 1  11  41  68  51  15   1
   8 | 1  13  61 136 155  86  19   1
   9 | 1  15  85 240 371 314 135  24  1
  10 | 1  17 113 388 763 882 585 202 29  1
  ...
		

Crossrefs

Row sums A326793. Cf. A224704.

Formula

O.g.f. as a continued fraction including initial term 1: (u marks up-triangles and d marks down-triangles)
A(u,d) = 1/(1 - u/(1 - u*d - u^2*d/(1 - u^2*d^2 - u^3*d^2/(1 - u^3*d^3 - u^4*d^3/(1 - u^4*d^4 - (...) ))))) = 1 + u + (1 + d)*u^2 + (1 + 3*d + d^2)*u^3 + ....
A(u,d) = 1/(2 - (1 + u)/(2 - (1 + u^2*d)/(2 - (1 + u^3*d^2)/(2 - (...) )))).
O.g.f. as a ratio of q-series: N(u,d)/D(u,d), where N(u,d) = Sum_{n >= 0} (-1)^n*u^(n^2+n)*d^(n^2)/( Product_{k = 1..n} ( 1 - (u*d)^k )^2 ) and D(u,d) = Sum_{n >= 0} (-1)^n*u^(n^2)*d^(n^2-n)/( Product_{k = 1..n} ( 1 - (u*d)^k )^2 )
Row sums = A326793.

A326793 The number of small Schröder paths such that the area between the path and the x-axis contains n up-triangles.

Original entry on oeis.org

1, 1, 2, 5, 12, 30, 75, 188, 472, 1186, 2981, 7494, 18842, 47376, 119126, 299545, 753220, 1894018, 4762640, 11976010, 30114592, 75725485, 190417684, 478820320, 1204031670, 3027633300, 7613224740, 19144059492, 48139261637, 121050006438
Offset: 0

Views

Author

Peter Bala, Jul 25 2019

Keywords

Comments

We define two types of plane triangles - up-triangles with vertices at the integer lattice points (x, y), (x+1, y+1) and (x+2, y) and down-triangles with vertices at the integer lattice points (x, y), (x-1, y+1) and (x+1, y+1). The area beneath a small Schröder path may be decomposed in a unique manner into a collection of up- and down-triangles. This decomposition produces a triangle stack in the sense of A224704. Here we are counting triangle stacks containing n up-triangles. See the Links section for an illustration.

Crossrefs

Formula

O.g.f. as a continued fraction: (u marks up-triangles)
A(u) = 1/(1 - u/(1 - u - u^2/(1 - u^2 - u^3/(1 - u^3 - u^4/(1 - u^4 - (...) ))))) = 1 + u + 2*u^2 + 5*u^3 + 12*u^4 + ....
A(u) = 1/(1 - u/(1 - (u + u^2)/(1 - u^3/(1 - (u^2 + u^4)/(1 - u^5/(1 - (u^3 + u^6)/(1 - u^7/( (...) )))))))).
A(u) = 1/(2 - (1 + u)/(2 - (1 + u^2)/(2 - (1 + u^3)/(2 - (...) )))).
A(u) = N(u)/D(u), where N(u) = Sum_{n >= 0} u^(n^2+n)/ Product_{k = 1..n} ((1 - u^k)^2) and D(u) = Sum_{n >= 0} u^(n^2)/ Product_{k = 1..n} ((1 - u^k)^2).
a(n) ~ c*d^n, where c = 0.29475 98606 22204 98206 41002 ..., d = 2.51457 96438 78729 18851 04371 ....
Row sums of A326792.

A316585 Number of ways to stack n triangles symmetrically (pointing upwards or downwards depending on row parity).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 6, 7, 12, 12, 21, 23, 39, 43, 74, 81, 138, 151, 257, 281, 479, 525, 895, 981, 1671, 1830, 3116, 3414, 5813, 6370, 10847, 11887, 20239, 22177, 37758, 41375, 70442, 77193, 131425, 144020, 245197, 268693, 457451, 501288, 853446, 935235, 1592242, 1744834, 2970580, 3255261
Offset: 0

Views

Author

Seiichi Manyama, Jul 07 2018

Keywords

Examples

			a(9) = 12.
    *   *   *   *   *   *   *   *   *
   / \ / \ / \ / \ / \ / \ / \ / \ / \
  *---*---*---*---*---*---*---*---*---*
.
    *   *   *   *---*   *   *   *
   / \ / \ / \ / \ / \ / \ / \ / \
  *---*---*---*---*---*---*---*---*
.
    *   *   *---*---*   *   *
   / \ / \ / \ / \ / \ / \ / \
  *---*---*---*---*---*---*---*
.
    *   *---*   *   *---*   *
   / \ / \ / \ / \ / \ / \ / \
  *---*---*---*---*---*---*---*
.
    *---*   *   *   *   *---*
   / \ / \ / \ / \ / \ / \ / \
  *---*---*---*---*---*---*---*
.
    *   *---*---*---*   *
   / \ / \ / \ / \ / \ / \
  *---*---*---*---*---*---*
.
    *---*   *---*   *---*
   / \ / \ / \ / \ / \ / \
  *---*---*---*---*---*---*
.
    *---*---*---*---*
   / \ / \ / \ / \ / \
  *---*---*---*---*---*
.
          *   *
         / \ / \
    *   *---*---*   *
   / \ / \ / \ / \ / \
  *---*---*---*---*---*
.
      *           *
     / \         / \
    *---*   *   *---*
   / \ / \ / \ / \ / \
  *---*---*---*---*---*
.
      *       *
     / \     / \
    *---*---*---*
   / \ / \ / \ / \
  *---*---*---*---*
.
        *
       / \
      *---*
     / \ / \
    *---*---*
   / \ / \ / \
  *---*---*---*
.
		

Crossrefs

Programs

  • Maple
    Motzk := proc(x,y,twoar)
        option remember;
        if x =0 then
            if y <> 0 or twoar <>0 then
                return 0;
            else
                return 1;
            end if;
        elif y < 0 or y > x or twoar A316585 := proc(twoar)
        local a,x,y ;
        a:= 0 ;
        for x from 0 to twoar do
        for y from 0 to x do
            a := a+Motzk(x,y,twoar) ;
        end do:
        end do:
        a ;
    end proc:
    seq(A316585(n),n=0..50) ; # R. J. Mathar, Aug 23 2018
  • Mathematica
    Motzk[x_, y_, twoar_] := Motzk[x, y, twoar] = Which[
    x == 0, If[y != 0 || twoar != 0, 0, 1],
    y < 0 || y > x || twoar < x, 0,
    y == 0 , If[Mod[x, 2] == 0, Motzk[x - 1, y + 1, twoar - 2y - 1], 0],
    Mod[y, 2] == Mod[x, 2], Motzk[x - 1, y + 1, twoar - 2y - 1] + Motzk[x - 1, y, twoar - 2y] + Motzk[x - 1, y - 1, twoar - 2y + 1],
    True, Motzk[x - 1, y, twoar - 2y]];
    A316585[twoar_] := Module[{a, x, y}, a = 0; For[x = 0, x <= twoar , x++, For[y = 0, y <= x, y++, a = a + Motzk[x, y, twoar]]]; a];
    Table[A316585[n], {n, 0, 50}] (* Jean-François Alcover, Nov 08 2023, after R. J. Mathar *)

Extensions

a(36)-a(50) from R. J. Mathar, Aug 23 2018
Previous Showing 11-16 of 16 results.