A143619 Expansion of 1/(1 - x^2 - x^7 - x^12 + x^14) (a Salem polynomial).
1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 3, 5, 5, 6, 8, 9, 12, 13, 17, 19, 24, 28, 34, 41, 49, 59, 71, 86, 103, 124, 149, 179, 215, 259, 311, 375, 450, 542, 651, 784, 942, 1133, 1363, 1638, 1971, 2369, 2851, 3427, 4123, 4957, 5962, 7170, 8622, 10370, 12470, 14998, 18035, 21691, 26085, 31371
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,0,0,1,0,0,0,0,1,0,-1).
Crossrefs
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 -x^2-x^7-x^12+x^14))); // G. C. Greubel, Nov 03 2018 -
Mathematica
CoefficientList[Series[1/(1 - x^2 - x^7 - x^12 + x^14), {x, 0, 50}], x] LinearRecurrence[{0,1,0,0,0,0,1,0,0,0,0,1,0,-1},{1,0,1,0,1,0,1,1,1,2,1,3,2,4},70] (* Harvey P. Dale, Aug 08 2022 *)
-
PARI
x='x+O('x^50); Vec(1/(1-x^2-x^7-x^12+x^14)) \\ G. C. Greubel, Nov 03 2018
Formula
G.f.: 1/(1 - x^2 - x^7 - x^12 + x^14). - Colin Barker, Nov 03 2012
a(n) = a(n-2) + a(n-7) + a(n-12) - a(n-14). - Franck Maminirina Ramaharo, Nov 02 2018
Extensions
New name from Colin Barker and Joerg Arndt, Nov 03 2012
Comments