cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A243924 Irregular triangular array of taxicab norms of Gaussian integers in array G generated as at Comments.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 3, 3, 4, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 6, 6, 6
Offset: 1

Views

Author

Clark Kimberling, Jun 17 2014

Keywords

Comments

An array G of Gaussian integers is generated as follows: (row 1) = (0), and for n >=2, row n consists of the numbers x+1 and then i*x, where duplicates are deleted as they occur. Every Gaussian integer occurs exactly once in G. The taxicab norm of a Gaussian integer b+c*i is the taxicab distance (also known as Manhattan distance) from 0 to b+c*i, given by |b|+|c|. The norms of numbers in row n are given here in nondecreasing order. Conjecture: the number of numbers in row n is 4n-13 for n >= 5.

Examples

			First 6 rows of G:
0
1
2 .. i
3 .. 2i .. i+1 ... -1
4 .. 3i .. 1+2i .. -2 .. i+2 .. -1+i . -i
5 .. 4i .. 1+3i .. -3 .. 2+2i . -2+i . -2i . i+3 . -1+2i . -1-i . 1-i
The corresponding taxicab norms follow:
0
1
1 2
1 2 2 3
2 2 1 3 3 3 4
3 3 2 3 2 4 2 4 4 4 5
Each row is then arranged in nondecreasing order:
0
1
1 2
1 2 2 3
1 2 2 3 3 3 4
2 2 2 3 3 3 4 4 4 4 5
		

Crossrefs

Programs

  • Mathematica
    z = 10; g[1] = {0}; f1[x_] := x + 1; f2[x_] := I*x; h[1] = g[1];
    b[n_] := b[n] = DeleteDuplicates[Union[f1[g[n - 1]], f2[g[n - 1]]]];
    h[n_] := h[n] = Union[h[n - 1], g[n - 1]];
    g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]
    Table[g[n], {n, 1, z}] (* the array G *)
    v = Table[Abs[Re[g[n]]] + Abs[Im[g[n]]], {n, 1, z}]
    w = Map[Sort, v] (* A243924, rows *)
    w1 = Flatten[w]  (* A243924, sequence *)

A245218 Decimal expansion of sup{f(n,1)}, where f(1,x) = x + 1 and thereafter f(n,x) = x + 1 if n is in A001951, else f(n,x) = 1/x.

Original entry on oeis.org

3, 4, 3, 6, 4, 8, 4, 8, 4, 3, 0, 9, 8, 1, 3, 5, 1, 7, 8, 4, 6, 1, 0, 5, 3, 9, 0, 3, 9, 2, 4, 7, 1, 3, 5, 6, 5, 0, 0, 9, 8, 8, 1, 6, 0, 6, 7, 3, 7, 8, 3, 0, 5, 4, 3, 6, 5, 8, 6, 6, 6, 6, 0, 5, 1, 7, 6, 2, 7, 1, 0, 7, 9, 0, 7, 6, 9, 8, 6, 2, 6, 0, 4, 6, 1, 6
Offset: 1

Views

Author

Clark Kimberling, Jul 13 2014

Keywords

Comments

See Comments at A245215.

Examples

			c = 3.43648484309813517846105390392471356500...  The first 12 numbers f(n,1) comprise S(12) = {1, 2, 3, 1/3, 4/3, 7/3, 3/7, 10/7, 17/7, 24/7, 7/24, 31/24}; max(S(12)) = 24/7 = 3.42857...
		

Crossrefs

Cf. A226080 (infinite Fibonacci tree), A245215, A245217, A245219, A245223.

Programs

  • Mathematica
    tmpRec = $RecursionLimit; $RecursionLimit = Infinity; u[x_] := u[x] = x + 1; d[x_] := d[x] = 1/x; r = Sqrt[2]; w = Table[Floor[k*r], {k, 2000}]; s[1] = 1; s[n_] := s[n] = If[MemberQ[w, n - 1], u[s[n - 1]], d[s[n - 1]]]; $RecursionLimit = tmpRec;
    m = Max[N[Table[s[n], {n, 1, 4000}], 300]]
    t = RealDigits[m]  (* A245217 *)
    (* Peter J. C. Moses, Jul 04 2014 *)

Formula

a(n)*inf{f(n,1)} = 1.

A245221 Decimal expansion of sup{f(n,1)}, where f(1,x) = x + 1 and thereafter f(n,x) = x + 1 if n is in A022838, else f(n,x) = 1/x.

Original entry on oeis.org

2, 7, 2, 0, 7, 6, 6, 4, 5, 0, 7, 2, 9, 4, 7, 5, 2, 9, 7, 5, 4, 6, 9, 5, 1, 7, 3, 4, 8, 1, 7, 1, 5, 1, 3, 2, 4, 2, 5, 4, 7, 4, 9, 7, 9, 6, 1, 7, 1, 4, 6, 4, 1, 6, 7, 9, 0, 0, 0, 8, 2, 8, 3, 6, 6, 8, 7, 6, 6, 2, 4, 2, 1, 2, 1, 6, 7, 7, 7, 9, 0, 9, 7, 7, 8, 6
Offset: 1

Views

Author

Clark Kimberling, Jul 14 2014

Keywords

Comments

See Comments at A245215.

Examples

			c = 0.367543491184951248721260972541092540...  The first 12 numbers f(n,1) comprise S(12) = {1, 2, 1/2, 3/2, 2/3, 5/3, 8/3, 3/8, 11/8, 8/11, 19/11, 11/19}; min(S(12)) = 3/8 = 0.375... and max(S(12)) = 8/3 = 2.666...
		

Crossrefs

Cf. A226080 (infinite Fibonacci tree), A245215, A245217, A245220, A245222.

Programs

  • Mathematica
    tmpRec = $RecursionLimit; $RecursionLimit = Infinity; u[x_] := u[x] = x + 1; d[x_] := d[x] = 1/x; r = Sqrt[3]; w = Table[Floor[k*r], {k, 2000}]; s[1] = 1; s[n_] := s[n] = If[MemberQ[w, n - 1], u[s[n - 1]], d[s[n - 1]]]; $RecursionLimit = tmpRec;
    m = Max[N[Table[s[n], {n, 1, 4000}], 300]]
    t = RealDigits[m]  (* A245221 *)
    (* Peter J. C. Moses, Jul 04 2014 *)

Formula

a(n)*inf{f(n,1)} = 1.

A245224 Decimal expansion of sup{f(n,1)}, where f(1,x) = x + 1 and thereafter f(n,x) = x + 1 if n is in A054385, else f(n,x) = 1/x.

Original entry on oeis.org

2, 7, 0, 7, 7, 7, 8, 7, 1, 6, 0, 0, 5, 0, 7, 8, 1, 2, 4, 3, 4, 0, 2, 0, 6, 6, 6, 5, 9, 6, 3, 1, 3, 1, 6, 2, 9, 9, 2, 3, 3, 1, 2, 4, 2, 4, 9, 1, 0, 4, 4, 5, 1, 7, 6, 6, 6, 9, 1, 3, 7, 9, 1, 8, 3, 4, 6, 4, 8, 3, 0, 8, 8, 4, 3, 2, 3, 4, 7, 0, 0, 2, 3, 5, 5, 3
Offset: 1

Views

Author

Clark Kimberling, Jul 14 2014

Keywords

Comments

See Comments at A245215.

Examples

			c = 2.7077787160050781243402066659631316299233...  The first 16 numbers f(n,1) comprise S(16) = {1, 2, 1/2, 3/2, 5/2, 2/5, 7/5, 12/5, 5/12, 17/12, 12/17, 29/17}; min(S(16)) = 17/46 = 0.36956... and max(S(12)) = 46/17 = 2.7058...
		

Crossrefs

Cf. A226080 (infinite Fibonacci tree), A245215, A245217, A245220, A245224.

Programs

  • Mathematica
    tmpRec = $RecursionLimit; $RecursionLimit = Infinity; u[x_] := u[x] = x + 1; d[x_] := d[x] = 1/x; r = E/(E-1); w = Table[Floor[k*r], {k, 2000}]; s[1] = 1; s[n_] := s[n] = If[MemberQ[w, n - 1], u[s[n - 1]], d[s[n - 1]]]; $RecursionLimit = tmpRec;
    m = Max[N[Table[s[n], {n, 1, 4000}], 300]]
    RealDigits[m]  (* A245224 *)
    (* Peter J. C. Moses, Jul 04 2014 *)

Formula

a(n)*inf{f(n,1)} = 1.

A226208 Zeckendorf distance between n and n+1.

Original entry on oeis.org

1, 1, 2, 3, 2, 4, 5, 2, 4, 6, 2, 7, 2, 4, 6, 2, 8, 2, 4, 9, 2, 4, 6, 2, 8, 2, 4, 10, 2, 4, 6, 2, 11, 2, 4, 6, 2, 8, 2, 4, 10, 2, 4, 6, 2, 12, 2, 4, 6, 2, 8, 2, 4, 13, 2, 4, 6, 2, 8, 2, 4, 10, 2, 4, 6, 2, 12, 2, 4, 6, 2, 8, 2, 4, 14, 2, 4, 6, 2, 8, 2, 4, 10
Offset: 1

Views

Author

Clark Kimberling, May 31 2013

Keywords

Comments

Zeckendorf distance is defined at A226207.

Examples

			7 = 5 + 2 -> 3 + 1 -> 2, and 8 -> 5 -> 3 -> 2.  The total number of Zeckendorf downshifts (i.e., arrows) is 5, so that a(7) = D(7,8) = 5.
		

Crossrefs

Cf. A226080.

Programs

  • Mathematica
    zeck[n_Integer] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, z = {}},    While[k > 1, If[t >= Fibonacci[k], AppendTo[z, 1]; t = t - Fibonacci[k], AppendTo[z, 0]]; k--]; If[n > 0 && z[[1]] == 0, Rest[z], z]]; d[n1_, n2_] := Module[{z1 = zeck[n1], z2 = zeck[n2]}, Length[z1] + Length[z2] - 2 (NestWhile[# + 1 &, 1, z1[[#]] == z2[[#]] &, 1, Min[{Length[z1], Length[z2]}]] - 1)]; lst = Map[d[#, # + 1] &, Range[100]] (* Peter J. C. Moses, May 30 2013 *)

A226211 Zeckendorf distance between n and 2*n.

Original entry on oeis.org

1, 1, 1, 4, 3, 5, 6, 5, 7, 7, 8, 8, 7, 7, 9, 9, 8, 10, 10, 10, 9, 9, 9, 11, 11, 11, 11, 10, 12, 12, 12, 12, 12, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 13, 12, 12, 14, 14, 14, 14, 14, 14, 14, 14, 13, 13, 13, 13, 13, 13, 13, 15, 15, 15, 15, 15, 15, 15, 15, 15
Offset: 1

Views

Author

Clark Kimberling, May 31 2013

Keywords

Comments

Zeckendorf distance is defined at A226207.

Examples

			11 = 8 + 3 -> 5 + 2 -> 3 + 1 -> 2, and 22 = 21 + 1 -> 13 -> 8 -> 5 -> 3 -> 2. The total number of Zeckendorf downshifts (i.e., arrows) is 8, so that a(11) = D(11,22) = 8.
		

Crossrefs

Programs

  • Mathematica
    zeck[n_Integer] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, z = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[z, 1]; t = t - Fibonacci[k], AppendTo[z, 0]]; k--]; If[n > 0 && z[[1]] == 0, Rest[z], z]]; d[n1_, n2_] := Module[{z1 = zeck[n1], z2 = zeck[n2]}, Length[z1] + Length[z2] - 2 (NestWhile[# + 1 &, 1, z1[[#]] == z2[[#]] &, 1, Min[{Length[z1], Length[z2]}]] - 1)];
    lst = Map[d[#, 2#] &, Range[100]] (* Peter J. C. Moses, May 30 2013 *)

A226212 Zeckendorf distance between n and floor(n/2).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 4, 4, 3, 5, 5, 4, 6, 6, 5, 5, 7, 7, 7, 6, 8, 8, 8, 8, 7, 7, 7, 9, 9, 9, 9, 9, 8, 8, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11, 11, 11, 11, 10, 10, 10, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1

Views

Author

Clark Kimberling, May 31 2013

Keywords

Comments

Zeckendorf distance is defined at A226207.

Examples

			11 = 8 + 3 -> 5 + 2 -> 3 + 1 -> 2, and 5 -> 3 -> 2.  The total number of Zeckendorf downshifts (i.e., arrows) is 5, so that a(11) = D(11,5) = 5.
		

Crossrefs

Programs

  • Mathematica
    zeck[n_Integer] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, z = {}},    While[k > 1, If[t >= Fibonacci[k], AppendTo[z, 1]; t = t - Fibonacci[k], AppendTo[z, 0]]; k--]; If[n > 0 && z[[1]] == 0, Rest[z], z]]; d[n1_, n2_] := Module[{z1 = zeck[n1], z2 = zeck[n2]}, Length[z1] + Length[z2] - 2 (NestWhile[# + 1 &, 1, z1[[#]] == z2[[#]] &, 1,
    Min[{Length[z1], Length[z2]}]] - 1)]; lst = Map[d[#, Floor[#/2]] &, Range[100]] (* Peter J. C. Moses, May 30 2013 *)

A226271 Index of 1/n in the Fibonacci (or rabbit) ordering of the positive rationals.

Original entry on oeis.org

1, 4, 6, 9, 14, 22, 35, 56, 90, 145, 234, 378, 611, 988, 1598, 2585, 4182, 6766, 10947, 17712, 28658, 46369, 75026, 121394, 196419, 317812, 514230, 832041, 1346270, 2178310, 3524579, 5702888, 9227466, 14930353, 24157818, 39088170, 63245987, 102334156, 165580142
Offset: 1

Views

Author

M. F. Hasler, Jun 01 2013

Keywords

Comments

The Fibonacci ordering of the rationals (cf. A226080) is the sequence of rationals produced from the initial vector [1] by appending iteratively the new rationals obtained by applying the map t-> (t+1, 1/t) to the vector (cf. example).
Apart from initial terms, the same as A001611=(1, 2, 2, 3, 4, 6,...), A020706=(4,6,9,...), A048577=(3, 4, 6, ...), A000381=(2, 3, 4, ...).

Examples

			Starting from the vector [1] and applying the map t->(1+t,1/t), we get [2,1] (but ignore the number 1 which already occurred earlier), then [3,1/2], then [4,1/3,3/2,2] (where we ignore 2), etc. This yields the sequence (1,2,3,1/2,4,1/3,3/2,5,1/4,4/3,5/2,2/3,....) The unit fractions 1=1/1, 1/2, 1/3, ... occur at positions 1,4,6,9,...
		

Programs

  • Mathematica
    LinearRecurrence[{2,0,-1},{1,4,6,9},40] (* Harvey P. Dale, Feb 04 2016 *)
  • PARI
    A226271(n)=if(n>1,fibonacci(n+2))+1
    
  • PARI
    {k=1;print1(s=1,",");U=Set(g=[1]);for(n=1,9,U=setunion(U,Set(g=select(f->!setsearch(U,f), concat(apply(t->[t+1,k/t],g))))); for(i=1,#g,numerator(g[i])==1&&print1(s+i","));s+=#g)} \\ for illustrative purpose
    
  • PARI
    Vec(-x*(2*x^3+2*x^2-2*x-1)/((x-1)*(x^2+x-1)) + O(x^50)) \\ Colin Barker, May 11 2016

Formula

a(n) = 2*a(n-1)-a(n-3) for n>4. G.f.: -x*(2*x^3+2*x^2-2*x-1) / ((x-1)*(x^2+x-1)). - Colin Barker, Jun 03 2013
a(n) = 1+(2^(-1-n)*((1-sqrt(5))^n*(-3+sqrt(5))+(1+sqrt(5))^n*(3+sqrt(5))))/sqrt(5) for n>1. - Colin Barker, May 11 2016
E.g.f.: -2*(1 + x) + exp(x) + (3*sqrt(5)*sinh(sqrt(5)*x/2) + 5*cosh(sqrt(5)*x/2))*exp(x/2)/5. - Ilya Gutkovskiy, May 11 2016

A245216 Decimal expansion of sup{f(n,1)}, where f(1,x) = x + 1 and thereafter f(n,x) = x + 1 if n is in A000201, else f(n,x) = 1/x.

Original entry on oeis.org

2, 7, 2, 9, 9, 6, 7, 7, 4, 1, 5, 9, 9, 8, 0, 2, 4, 8, 7, 8, 9, 1, 6, 4, 6, 7, 7, 4, 8, 7, 5, 9, 0, 7, 5, 2, 1, 1, 4, 3, 7, 8, 4, 1, 1, 3, 5, 3, 7, 0, 3, 4, 6, 2, 5, 9, 8, 6, 9, 5, 2, 7, 2, 4, 5, 2, 9, 0, 0, 6, 8, 8, 6, 4, 9, 3, 2, 6, 4, 2, 8, 6, 8, 0, 0, 6
Offset: 1

Views

Author

Clark Kimberling, Jul 13 2014

Keywords

Comments

Equivalently, f(n,x) = 1/(f(n-1,x) if n is in A001950 (upper Wythoff sequence, given by w(n) = floor[tau*n], where tau = (1 + sqrt(5))/2, the golden ratio) and f(n,x) = f(n-1) + 1 otherwise. Let c = sup{f(n,1)}. The continued fraction of c is [2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, ...], which appears to be identical to the Hofstadter eta-sequence at A006340. See Comments at A245215.

Examples

			c = 2.7299677415998024878916467748759075211...  The first 12 numbers f(n,1) comprise S(12) = {1, 2, 1/2, 3/2, 5/2, 2/5, 7/5, 5/7, 12/7, 19/7, 7/19, 26/19}; max(S(12)) = 19/7 = 2.71429...
		

Crossrefs

Cf. A226080 (infinite Fibonacci tree), A006340, A245215, A245217, A245220, A245223.

Programs

  • Mathematica
    tmpRec = $RecursionLimit; $RecursionLimit = Infinity; u[x_] := u[x] = x + 1; d[x_] := d[x] = 1/x; r = GoldenRatio; w = Table[Floor[k*r], {k, 2000}]; s[1] = 1; s[n_] := s[n] = If[MemberQ[w, n - 1], u[s[n - 1]], d[s[n - 1]]]; $RecursionLimit = tmpRec;
    m = Max[N[Table[s[n], {n, 1, 4000}], 300]]
    RealDigits[m]  (* A245216 *)
    (* Peter J. C. Moses, Jul 04 2014 *)

Formula

inf{f(n,1)}*(2 + a(n)) = 1.

A245225 Continued fraction expansion of the constant c in A245224; c = sup{f(n,1)}, where f(1,x) = x + 1 and thereafter f(n,x) = x + 1 if n is in A054385, else f(n,x) = 1/x.

Original entry on oeis.org

2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2
Offset: 0

Views

Author

Clark Kimberling, Jul 14 2014

Keywords

Comments

See Comments at A245215.

Examples

			c = 2.70777871600507812434020666596313162... ; The first 16 numbers f(n,1) comprise S(16) = {1, 2, 1/2, 3/2, 5/2, 2/5, 7/5, 12/5, 5/12, 17/12, 12/17, 29/17}; max(S(16)) = 46/17, with continued fraction [2, 1, 2, 2, 2].
		

Crossrefs

Cf. A226080 (infinite Fibonacci tree), A245217, A245219, A245222, A245224 (decimal expansion).

Programs

  • Mathematica
    tmpRec = $RecursionLimit; $RecursionLimit = Infinity; u[x_] := u[x] = x + 1; d[x_] := d[x] = 1/x; r = E/(E-1); w = Table[Floor[k*r], {k, 2000}]; s[1] = 1; s[n_] := s[n] = If[MemberQ[w, n - 1], u[s[n - 1]], d[s[n - 1]]]; max = Max[N[Table[s[n], {n, 1, 3000}], 200]] (* A245224 *)
    ContinuedFraction[max, 120] (* A245225 *)

Extensions

Offset changed by Andrew Howroyd, Jul 07 2024
Previous Showing 21-30 of 42 results. Next