cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 129 results. Next

A345916 Numbers k such that the k-th composition in standard order (row k of A066099) has reverse-alternating sum <= 0.

Original entry on oeis.org

0, 3, 5, 9, 10, 13, 15, 17, 18, 23, 25, 29, 33, 34, 36, 39, 41, 43, 45, 46, 49, 50, 53, 55, 57, 58, 61, 63, 65, 66, 68, 71, 75, 77, 78, 81, 85, 89, 90, 95, 97, 98, 103, 105, 109, 113, 114, 119, 121, 125, 129, 130, 132, 135, 136, 139, 141, 142, 145, 147, 149
Offset: 1

Views

Author

Gus Wiseman, Jul 08 2021

Keywords

Comments

The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
     0: ()
     3: (1,1)
     5: (2,1)
     9: (3,1)
    10: (2,2)
    13: (1,2,1)
    15: (1,1,1,1)
    17: (4,1)
    18: (3,2)
    23: (2,1,1,1)
    25: (1,3,1)
    29: (1,1,2,1)
    33: (5,1)
    34: (4,2)
    36: (3,3)
		

Crossrefs

The version for Heinz numbers of partitions is A000290.
These compositions are counted by A058622.
These are the positions of terms <= 0 in A344618.
The opposite (k >= 0) version is A345914.
The version for unreversed alternating sum is A345915.
The strictly negative (k < 0) version is A345920.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A345197 counts compositions by sum, length, and alternating sum.
Standard compositions: A000120, A066099, A070939, A228351, A124754, A344618.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
- k = 0: counted by A088218, ranked by A344619/A344619.
- k = 1: counted by A000984, ranked by A345909/A345911.
- k = -1: counted by A001791, ranked by A345910/A345912.
- k = 2: counted by A088218, ranked by A345925/A345922.
- k = -2: counted by A002054, ranked by A345924/A345923.
- k >= 0: counted by A116406, ranked by A345913/A345914.
- k <= 0: counted by A058622(n-1), ranked by A345915/A345916.
- k > 0: counted by A027306, ranked by A345917/A345918.
- k < 0: counted by A294175, ranked by A345919/A345920.
- k != 0: counted by A058622, ranked by A345921/A345921.
- k even: counted by A081294, ranked by A053754/A053754.
- k odd: counted by A000302, ranked by A053738/A053738.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    Select[Range[0,100],sats[stc[#]]<=0&]

A351290 Numbers k such that the k-th composition in standard order has all distinct runs.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 47, 48, 50, 51, 52, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 78
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
   0:      0  ()
   1:      1  (1)
   2:     10  (2)
   3:     11  (1,1)
   4:    100  (3)
   5:    101  (2,1)
   6:    110  (1,2)
   7:    111  (1,1,1)
   8:   1000  (4)
   9:   1001  (3,1)
  10:   1010  (2,2)
  11:   1011  (2,1,1)
  12:   1100  (1,3)
  14:   1110  (1,1,2)
  15:   1111  (1,1,1,1)
		

Crossrefs

The version for Heinz numbers and prime multiplicities is A130091.
The version using binary expansions is A175413, complement A351205.
The version for run-lengths instead of runs is A329739.
These compositions are counted by A351013.
The complement is A351291.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351204 counts partitions where every permutation has all distinct runs.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions:
- Length is A000120.
- Parts are A066099, reverse A228351.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Split[stc[#]]&]

A246534 a(n) = Sum_{k=1..n} 2^(T(k)-1), where T(k)=k(k+1)/2 = A000217(k).

Original entry on oeis.org

0, 1, 5, 37, 549, 16933, 1065509, 135283237, 34495021605, 17626681066021, 18032025190548005, 36911520172609651237, 151152638972001256489509, 1238091191924352276155613733, 20283647694843594776223406899749, 664634281540152780046679753547072037
Offset: 0

Views

Author

M. F. Hasler, Aug 28 2014

Keywords

Comments

Similar to A181388, this occurs as binary encoding of a straight n-omino lying on the y-axis, when the grid points of the first quadrant (N x N, N={0,1,2,...}) are given the weight 2^k, with k=0, 1,2, 3,4,5, ... filled in by antidiagonals.
Numbers k such that the k-th composition in standard order (row k of A066099) is a reversed initial interval. - Gus Wiseman, Apr 02 2020

Examples

			Label the cells of an infinite square matrix with 0,1,2,3,... along antidiagonals:
  0 1 3 6 10 ...
  2 4 7 ...
  5 8 ...
  9 ...
  ....
Now any subset of these cells can be represented by the sum of 2 raised to the power written in the given cells. In particular, the subset consisting of the first cell in the first 1, 2, 3, ... rows is represented by 2^0, 2^0+2^2, 2^0+2^2+2^5, ...
		

Crossrefs

The version for prime (rather than binary) indices is A002110.
The non-strict generalization is A114994.
The non-reversed version is A164894.
Intersection of A333256 and A333217.
Partial sums of A036442.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Select[Range[0,1000],normQ[stc[#]]&&Greater@@stc[#]&] (* Gus Wiseman, Apr 02 2020 *)
  • PARI
    t=0;vector(20,n,t+=2^(n*(n+1)/2-1)) \\ yields the vector starting with a[1]=1
    
  • PARI
    t=0;vector(20,n,if(n>1,t+=2^(n*(n-1)/2-1))) \\ yields the vector starting with 0
    
  • Python
    a = 0
    for n in range(1,17): print(a, end =', '); a += 1<<(n-1)*(n+2)//2 # Ya-Ping Lu, Jan 23 2024

A333221 Irregular triangle read by rows where row n lists the set of STC-numbers of permutations of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 7, 10, 9, 12, 16, 11, 13, 14, 32, 17, 24, 18, 20, 15, 64, 21, 22, 26, 128, 19, 25, 28, 34, 40, 33, 48, 256, 23, 27, 29, 30, 36, 65, 96, 42, 35, 49, 56, 512, 37, 38, 41, 44, 50, 52, 1024, 31, 66, 80, 129, 192, 68, 72, 43, 45, 46, 53, 54, 58
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2020

Keywords

Comments

This is a permutation of the nonnegative integers.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. We define the composition with STC-number k to be the k-th composition in standard order.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Reading by columns gives:
  0  1  2  3  4  5  8  7  10  9   16  11  32  17  18  15  64  21  128  19
                 6            12      13      24  20          22       25
                                      14                      26       28
  34  33  256  23  36  65  42  35  512  37  1024  31  66  129  68  43
  40  48       27      96      49       38            80  192  72  45
               29              56       41                         46
               30                       44                         53
                                        50                         54
                                        52                         58
The sequence of terms together with the corresponding compositions begins:
     0: ()           24: (1,4)          27: (1,2,1,1)
     1: (1)          18: (3,2)          29: (1,1,2,1)
     2: (2)          20: (2,3)          30: (1,1,1,2)
     3: (1,1)        15: (1,1,1,1)      36: (3,3)
     4: (3)          64: (7)            65: (6,1)
     5: (2,1)        21: (2,2,1)        96: (1,6)
     6: (1,2)        22: (2,1,2)        42: (2,2,2)
     8: (4)          26: (1,2,2)        35: (4,1,1)
     7: (1,1,1)     128: (8)            49: (1,4,1)
    10: (2,2)        19: (3,1,1)        56: (1,1,4)
     9: (3,1)        25: (1,3,1)       512: (10)
    12: (1,3)        28: (1,1,3)        37: (3,2,1)
    16: (5)          34: (4,2)          38: (3,1,2)
    11: (2,1,1)      40: (2,4)          41: (2,3,1)
    13: (1,2,1)      33: (5,1)          44: (2,1,3)
    14: (1,1,2)      48: (1,5)          50: (1,3,2)
    32: (6)         256: (9)            52: (1,2,3)
    17: (4,1)        23: (2,1,1,1)    1024: (11)
		

Crossrefs

Row lengths are A008480.
Column k = 1 is A233249.
Column k = -1 is A333220.
A related triangle for partitions is A215366.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fbi[q_]:=If[q=={},0,Total[2^q]/2];
    Table[Sort[fbi/@Accumulate/@Permutations[primeMS[n]]],{n,30}]

A335235 Numbers k such that the k-th composition in standard order (A066099) is pairwise coprime, where a singleton is always considered coprime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 37, 38, 39, 41, 44, 47, 48, 49, 50, 51, 52, 55, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 75, 77, 78, 79, 80, 83, 89, 92, 95, 96, 97
Offset: 1

Views

Author

Gus Wiseman, May 28 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
   1: (1)          20: (2,3)          48: (1,5)
   2: (2)          23: (2,1,1,1)      49: (1,4,1)
   3: (1,1)        24: (1,4)          50: (1,3,2)
   4: (3)          25: (1,3,1)        51: (1,3,1,1)
   5: (2,1)        27: (1,2,1,1)      52: (1,2,3)
   6: (1,2)        28: (1,1,3)        55: (1,2,1,1,1)
   7: (1,1,1)      29: (1,1,2,1)      56: (1,1,4)
   8: (4)          30: (1,1,1,2)      57: (1,1,3,1)
   9: (3,1)        31: (1,1,1,1,1)    59: (1,1,2,1,1)
  11: (2,1,1)      32: (6)            60: (1,1,1,3)
  12: (1,3)        33: (5,1)          61: (1,1,1,2,1)
  13: (1,2,1)      35: (4,1,1)        62: (1,1,1,1,2)
  14: (1,1,2)      37: (3,2,1)        63: (1,1,1,1,1,1)
  15: (1,1,1,1)    38: (3,1,2)        64: (7)
  16: (5)          39: (3,1,1,1)      65: (6,1)
  17: (4,1)        41: (2,3,1)        66: (5,2)
  18: (3,2)        44: (2,1,3)        67: (5,1,1)
  19: (3,1,1)      47: (2,1,1,1,1)    68: (4,3)
		

Crossrefs

The version counting partitions is A051424, with strict case A007360.
The version for binary indices is A087087.
The version counting compositions is A101268.
The version for prime indices is A302569.
The case without singletons is A333227.
The complement is A335236.
Numbers whose binary indices are pairwise coprime are A326675.
Coprime partitions are counted by A327516.
All of the following pertain to compositions in standard order:
- Length is A000120.
- The parts are row k of A066099.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],Length[stc[#]]==1||CoprimeQ@@stc[#]&]

A374638 Numbers k such that the leaders of anti-runs in the k-th composition in standard order (A066099) are distinct.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 24, 25, 26, 32, 33, 34, 35, 37, 38, 40, 41, 44, 45, 46, 48, 49, 50, 52, 53, 54, 64, 65, 66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83, 88, 89, 91, 92, 93, 96, 97, 98, 100, 101, 102, 104
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2024

Keywords

Comments

The leaders of anti-runs in a sequence are obtained by splitting it into maximal consecutive anti-runs (sequences with no adjacent equal terms) and taking the first term of each.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   4: (3)
   5: (2,1)
   6: (1,2)
   8: (4)
   9: (3,1)
  11: (2,1,1)
  12: (1,3)
  13: (1,2,1)
  16: (5)
  17: (4,1)
  18: (3,2)
  19: (3,1,1)
  20: (2,3)
  22: (2,1,2)
  24: (1,4)
  25: (1,3,1)
  26: (1,2,2)
		

Crossrefs

Positions of distinct (strict) rows in A374515.
Compositions of this type are counted by A374518.
For identical instead of distinct we have A374519, counted by A374517.
The complement is A374639.
Other types of runs (instead of anti-):
- For identical runs we have A374249, counted by A274174.
- For weakly increasing runs we have A374768, counted by A374632.
- For strictly increasing runs we have A374698, counted by A374687.
- For weakly decreasing runs we have A374701, counted by A374743.
- For strictly decreasing runs we have A374767, counted by A374761.
A065120 gives leaders of standard compositions.
A106356 counts compositions by number of maximal anti-runs.
A238279 counts compositions by number of maximal runs
A238424 counts partitions whose first differences are an anti-run.
All of the following pertain to compositions in standard order:
- Length is A000120.
- Sum is A029837(n+1).
- Parts are listed by A066099.
- Number of adjacent equal pairs is A124762, unequal A333382.
- Anti-runs are ranked by A333489, counted by A003242.
- Run-length transform is A333627, sum A070939.
- Run-compression transform is A373948, sum A373953, excess A373954.
Six types of maximal runs:

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@First/@Split[stc[#],UnsameQ]&]

A057335 a(0) = 1, and for n > 0, a(n) = A000040(A000120(n)) * a(floor(n/2)); essentially sequence A055932 generated using A000120, hence sorted by number of factors.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 18, 30, 16, 24, 36, 60, 54, 90, 150, 210, 32, 48, 72, 120, 108, 180, 300, 420, 162, 270, 450, 630, 750, 1050, 1470, 2310, 64, 96, 144, 240, 216, 360, 600, 840, 324, 540, 900, 1260, 1500, 2100, 2940, 4620, 486, 810, 1350, 1890, 2250, 3150, 4410
Offset: 0

Views

Author

Alford Arnold, Aug 27 2000

Keywords

Comments

Note that for n>0 the prime divisors of a(n) are consecutive primes starting with 2. All of the least prime signatures (A025487) are included; with the other values forming A056808.
Using the formula, terms of b(n)= a(n)/A057334(n) are: 1, 1, 2, 2, 4, 4, 6, 6, 8, ..., indeed a(n) repeated. - Michel Marcus, Feb 09 2014
a(n) is the unique normal number whose unsorted prime signature is the k-th composition in standard order (graded reverse-lexicographic). This composition (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. A number is normal if its prime indices cover an initial interval of positive integers. Unsorted prime signature is the sequence of exponents in a number's prime factorization. - Gus Wiseman, Apr 19 2020

Examples

			From _Gus Wiseman_, Apr 19 2020: (Start)
The sequence of terms together with their prime indices begins:
      1: {}
      2: {1}
      4: {1,1}
      6: {1,2}
      8: {1,1,1}
     12: {1,1,2}
     18: {1,2,2}
     30: {1,2,3}
     16: {1,1,1,1}
     24: {1,1,1,2}
     36: {1,1,2,2}
     60: {1,1,2,3}
     54: {1,2,2,2}
     90: {1,2,2,3}
    150: {1,2,3,3}
    210: {1,2,3,4}
     32: {1,1,1,1,1}
     48: {1,1,1,1,2}
For example, the 27th composition in standard order is (1,2,1,1), and the normal number with prime signature (1,2,1,1) is 630 = 2*3*3*5*7, so a(27) = 630.
(End)
		

Crossrefs

Cf. A324939.
Unsorted prime signature is A124010.
Numbers whose prime signature is aperiodic are A329139.
The reversed version is A334031.
A partial inverse is A334032.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Aperiodic compositions are A328594.
- Normal compositions are A333217.
- Permutations are A333218.
- Heinz number is A333219.
Related to A019565 via A122111 and to A000079 via A336321.

Programs

  • Mathematica
    Table[Times @@ Map[If[# == 0, 1, Prime@ #] &, Accumulate@ IntegerDigits[n, 2]], {n, 0, 54}] (* Michael De Vlieger, May 23 2017 *)
  • PARI
    mg(n) = if (n==0, 1, prime(hammingweight(n))); \\ A057334
    lista(nn) = {my(v = vector(nn)); v[1] = 1; for (i=2, nn, v[i] = mg(i-1)*v[(i+1)\2];); v;} \\ Michel Marcus, Feb 09 2014
    
  • PARI
    A057335(n) = if(0==n,1,prime(hammingweight(n))*A057335(n\2)); \\ Antti Karttunen, Jul 20 2020

Formula

a(n) = A057334(n) * a (repeated).
A334032(a(n)) = n; a(A334032(n)) = A071364(n). - Gus Wiseman, Apr 19 2020
a(n) = A122111(A019565(n)); A019565(n) = A122111(a(n)). - Peter Munn, Jul 18 2020
a(n) = A336321(2^n). - Peter Munn, Mar 04 2022
Sum_{n>=0} 1/a(n) = Sum_{n>=0} 1/A005867(n) = 2.648101... (A345974). - Amiram Eldar, Jun 26 2025

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
New primary name from Antti Karttunen, Jul 20 2020

A161511 Number of 1...0 pairs in the binary representation of 2n.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 5, 6, 4, 5, 5, 6, 5, 7, 6, 7, 5, 8, 7, 8, 6, 9, 7, 8, 5, 6, 6, 7, 6, 8, 7, 8, 6, 9, 8, 9, 7, 10, 8, 9, 6, 10, 9, 10, 8, 11, 9, 10, 7, 12, 10, 11, 8, 12, 9, 10, 6, 7, 7, 8, 7, 9, 8, 9, 7, 10, 9, 10, 8, 11, 9, 10, 7, 11, 10, 11, 9, 12, 10, 11, 8, 13, 11, 12, 9, 13
Offset: 0

Views

Author

Keywords

Comments

Row (partition) sums of A125106.
a(n) is also the weight (= sum of parts) of the integer partition having viabin number n. The viabin number of an integer partition is defined in the following way. Consider the southeast border of the Ferrers board of the integer partition and consider the binary number obtained by replacing each east step with 1 and each north step, except the last one, with 0. The corresponding decimal form is, by definition, the viabin number of the given integer partition. "Viabin" is coined from "via binary". For example, consider the integer partition [2,2,2,1]. The southeast border of its Ferrers board yields 10100, leading to the viabin number 20. - Emeric Deutsch, Jul 24 2017

Examples

			For n = 5, the binary representation of 2n is 1010; the 1...0 pairs are 10xx, 1xx0, and xx10, so a(5) = 3.
		

Crossrefs

Cf. A000120, A243499 (gives the corresponding products), A227183, A056239, A243503, A006068, A163511.
Sum of prime indices of A005940.
Row sums of A125106.
A reverse version is A359043, row sums of A242628.
A029837 adds up standard compositions, row sums of A066099.
A029931 adds up binary indices, row sums of A048793.

Programs

  • Mathematica
    a[0] = 0; a[n_] := If[EvenQ[n], a[n/2] + DigitCount[n/2, 2, 1], a[(n-1)/2] + 1]; Array[a, 93, 0] (* Jean-François Alcover, Sep 09 2017 *)
  • PARI
    a(n)=local(t,k);t=0;k=1;while(n>0,if(n%2==0,k++,t+=k);n\=2);t
    
  • Python
    def A161511(n):
        a, b = 0, 0
        for i, j in enumerate(bin(n)[:1:-1], 1):
            if int(j):
                a += i-b
                b += 1
        return a # Chai Wah Wu, Jul 26 2023
  • Scheme
    ;; Two variants, the recursive one requiring memoizing definec-macro from Antti Karttunen's IntSeq-library.
    (define (A161511 n) (let loop ((n n) (i 1) (s 0)) (cond ((zero? n) s) ((even? n) (loop (/ n 2) (+ i 1) s)) (else (loop (/ (- n 1) 2) i (+ s i))))))
    (definec (A161511 n) (cond ((zero? n) n) ((even? n) (+ (A000120 n) (A161511 (/ n 2)))) (else (+ 1 (A161511 (/ (- n 1) 2))))))
    ;; Antti Karttunen, Jun 28 2014
    

Formula

a(0) = 0; a(2n) = a(n) + A000120(n); a(2n+1) = a(n) + 1.
From Antti Karttunen, Jun 28 2014: (Start)
Can be also obtained by mapping with an appropriate permutation from the lists of partition sizes computed for other enumerations similar to A125106:
a(n) = A227183(A006068(n)).
a(n) = A056239(A005940(n+1)).
a(n) = A243503(A163511(n)). (End)
a(n) = A029931(n) - binomial(A000120(n),2). - Gus Wiseman, Jan 03 2023
a(n) = a(n - A048896(n-1)) + 1 for n>=1 (see Peter J. Taylor link). - Mikhail Kurkov, Jul 04 2025

A333222 Numbers k such that every restriction of the k-th composition in standard order to a subinterval has a different sum.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 12, 16, 17, 18, 20, 24, 32, 33, 34, 40, 41, 48, 50, 64, 65, 66, 68, 69, 70, 72, 80, 81, 88, 96, 98, 104, 128, 129, 130, 132, 133, 134, 144, 145, 160, 161, 176, 192, 194, 196, 208, 256, 257, 258, 260, 261, 262, 264, 265, 268, 272, 274
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2020

Keywords

Comments

Also numbers whose binary indices together with 0 define a Golomb ruler.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The list of terms together with the corresponding compositions begins:
    0: ()        41: (2,3,1)    130: (6,2)      262: (6,1,2)
    1: (1)       48: (1,5)      132: (5,3)      264: (5,4)
    2: (2)       50: (1,3,2)    133: (5,2,1)    265: (5,3,1)
    4: (3)       64: (7)        134: (5,1,2)    268: (5,1,3)
    5: (2,1)     65: (6,1)      144: (3,5)      272: (4,5)
    6: (1,2)     66: (5,2)      145: (3,4,1)    274: (4,3,2)
    8: (4)       68: (4,3)      160: (2,6)      276: (4,2,3)
    9: (3,1)     69: (4,2,1)    161: (2,5,1)    288: (3,6)
   12: (1,3)     70: (4,1,2)    176: (2,1,5)    289: (3,5,1)
   16: (5)       72: (3,4)      192: (1,7)      290: (3,4,2)
   17: (4,1)     80: (2,5)      194: (1,5,2)    296: (3,2,4)
   18: (3,2)     81: (2,4,1)    196: (1,4,3)    304: (3,1,5)
   20: (2,3)     88: (2,1,4)    208: (1,2,5)    320: (2,7)
   24: (1,4)     96: (1,6)      256: (9)        321: (2,6,1)
   32: (6)       98: (1,4,2)    257: (8,1)      324: (2,4,3)
   33: (5,1)    104: (1,2,4)    258: (7,2)      328: (2,3,4)
   34: (4,2)    128: (8)        260: (6,3)      352: (2,1,6)
   40: (2,4)    129: (7,1)      261: (6,2,1)    384: (1,8)
		

Crossrefs

A subset of A233564.
Also a subset of A333223.
These compositions are counted by A169942 and A325677.
The number of distinct nonzero subsequence-sums is A333224.
The number of distinct subsequence-sums is A333257.
Lengths of optimal Golomb rulers are A003022.
Inequivalent optimal Golomb rulers are counted by A036501.
Complete rulers are A103295, with perfect case A103300.
Knapsack partitions are counted by A108917, with strict case A275972.
Distinct subsequences are counted by A124770 and A124771.
Golomb subsets are counted by A143823.
Heinz numbers of knapsack partitions are A299702.
Knapsack compositions are counted by A325676.
Maximal Golomb rulers are counted by A325683.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,300],UnsameQ@@ReplaceList[stc[#],{_,s__,_}:>Plus[s]]&]

A351291 Numbers k such that the k-th composition in standard order does not have all distinct runs.

Original entry on oeis.org

13, 22, 25, 45, 46, 49, 53, 54, 59, 76, 77, 82, 89, 91, 93, 94, 97, 101, 102, 105, 108, 109, 110, 115, 118, 141, 148, 150, 153, 156, 162, 165, 166, 173, 177, 178, 180, 181, 182, 183, 187, 189, 190, 193, 197, 198, 201, 204, 205, 209, 210, 213, 214, 216, 217
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their binary expansions and corresponding compositions begin:
  13:     1101  (1,2,1)
  22:    10110  (2,1,2)
  25:    11001  (1,3,1)
  45:   101101  (2,1,2,1)
  46:   101110  (2,1,1,2)
  49:   110001  (1,4,1)
  53:   110101  (1,2,2,1)
  54:   110110  (1,2,1,2)
  59:   111011  (1,1,2,1,1)
  76:  1001100  (3,1,3)
  77:  1001101  (3,1,2,1)
  82:  1010010  (2,3,2)
  89:  1011001  (2,1,3,1)
  91:  1011011  (2,1,2,1,1)
  93:  1011101  (2,1,1,2,1)
  94:  1011110  (2,1,1,1,2)
		

Crossrefs

The version for Heinz numbers of partitions is A130092, complement A130091.
Normal multisets with a permutation of this type appear to be A283353.
Partitions w/o permutations of this type are A351204, complement A351203.
The version using binary expansions is A351205, complement A175413.
The complement is A351290, counted by A351013.
A005811 counts runs in binary expansion, distinct A297770.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has all distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612, counted by A003242.
A345167 ranks alternating compositions, counted by A025047.
Counting words with all distinct runs:
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions (A066099, reverse A228351):
- Length is A000120.
- Sum is A070939.
- Runs are counted by A124767, distinct A351014.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!UnsameQ@@Split[stc[#]]&]
Previous Showing 61-70 of 129 results. Next