cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 59 results. Next

A003002 Size of the largest subset of the numbers [1...n] which does not contain a 3-term arithmetic progression.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 22, 22, 22, 22
Offset: 0

Views

Author

Keywords

Comments

"Sequences containing no 3-term arithmetic progressions" is another phrase people may be searching for.
a(n) = size of largest subset of [1..n] such that no term is the average of any two others. These are also called non-averaging sets, or 3-free sequences. - N. J. A. Sloane, Mar 01 2012
More terms of this sequence can be found directly from A065825, because A003002(n) (this sequence) = the integer k such that A065825(k) <= n < A065825(k+1). - Shreevatsa R, Oct 18 2009

Examples

			Examples from Dybizbanski (2012) (includes earlier examples found by other people):
n, a(n), example of an optimal subset:
0, 0, []
1, 1, [1]
2, 2, [1, 2]
4, 3, [1, 2, 4]
5, 4, [1, 2, 4, 5]
9, 5, [1, 2, 4, 8, 9]
11, 6, [1, 2, 4, 5, 10, 11]
13, 7, [1, 2, 4, 5, 10, 11, 13]
14, 8, [1, 2, 4, 5, 10, 11, 13, 14]
20, 9, [1, 2, 6, 7, 9, 14, 15, 18, 20]
24, 10, [1, 2, 5, 7, 11, 16, 18, 19, 23, 24]
26, 11, [1, 2, 5, 7, 11, 16, 18, 19, 23, 24, 26]
30, 12, [1, 3, 4, 8, 9, 11, 20, 22, 23, 27, 28, 30]
32, 13, [1, 2, 4, 8, 9, 11, 19, 22, 23, 26, 28, 31, 32]
36, 14, [1, 2, 4, 8, 9, 13, 21, 23, 26, 27, 30, 32, 35, 36]
40, 15, [1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37, 38, 40]
41, 16, [1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37, 38, 40, 41]
51, 17, [1, 2, 4, 5, 10, 13, 14, 17, 31, 35, 37, 38, 40, 46, 47, 50, 51]
54, 18, [1, 2, 5, 6, 12, 14, 15, 17, 21, 31, 38, 39, 42, 43, 49, 51, 52, 54]
58, 19, [1, 2, 5, 6, 12, 14, 15, 17, 21, 31, 38, 39, 42, 43, 49, 51, 52, 54, 58]
63, 20, [1, 2, 5, 7, 11, 16, 18, 19, 24, 26, 38, 39, 42, 44, 48, 53, 55, 56, 61, 63]
71, 21, [1, 2, 5, 7, 10, 17, 20, 22, 26, 31, 41, 46, 48, 49, 53, 54, 63, 64, 68, 69, 71]
74, 22, [1, 2, 7, 9, 10, 14, 20, 22, 23, 25, 29, 46, 50, 52, 53, 55, 61, 65, 66, 68, 73, 74]
82, 23, [1, 2, 4, 8, 9, 11, 19, 22, 23, 26, 28, 31, 49, 57, 59, 62, 63, 66, 68, 71, 78, 81, 82]
		

References

  • H. L. Abbott, On a conjecture of Erdos and Straus on non-averaging sets of integers, Proc. 5th British Combinatorial Conference, 1975, pp. 1-4.
  • Bloom, T. F. (2014). Quantitative results in arithmetic combinatorics (Doctoral dissertation, University of Bristol).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • E. G. Straus, Nonaveraging sets. In Combinatorics (Proc. Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., 1968), pp. 215-222. Amer. Math. Soc., Providence, R.I., 1971. MR0316255 (47 #4803)
  • T. Tao and V. Vu, Additive Combinatorics, Problem 10.1.3.

Crossrefs

The classical lower bound is A104406; A229037 gives a "greedy" lower bound. - N. J. A. Sloane, Apr 29 2023
Cf. A358062 (diagonal domination number for the n X n queen graph).
A selection of sequences related to "no three-term arithmetic progression": A003002, A003003, A003278, A004793, A005047, A005487, A033157, A065825, A092482, A093678, A093679, A093680, A093681, A093682, A094870, A101884, A101886, A101888, A140577, A185256, A208746, A229037.

Programs

  • Mathematica
    (* Program not suitable to compute a large number of terms *)
    a[n_] := a[n] = For[r = Range[n]; k = n, k >= 1, k--, If[AnyTrue[Subsets[r, {k}], FreeQ[#, {_, a_, _, b_, _, c_, _} /; b - a == c - b] &], Return[k]]];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 25}] (* Jean-François Alcover, Jan 21 2018 *)
  • PARI
    ap3(v)=for(i=1,#v-2, for(j=i+2,#v, my(t=v[i]+v[j]); if(t%2==0 && setsearch(v,t/2), return(1)))); 0
    a(N)=forstep(n=N,2,-1, forvec(v=vector(n,i,[1,N]),if(!ap3(v), return(n)),2)); N \\ Charles R Greathouse IV, Apr 22 2022

Formula

Sanders proves that a(n) << n*(log log n)^5/log n. - Charles R Greathouse IV, Jan 22 2016
Bloom & Sisask prove that a(n) << n/(log n)^c for some c > 1. - Charles R Greathouse IV, Oct 11 2022

Extensions

Extended from 53 terms to 80 terms, using a simple brute-force program with some pruning, by Shreevatsa R, Oct 18 2009
See Dybizbanski (2012) for first 120 terms. - N. J. A. Sloane, Dec 17 2013
Edited by N. J. A. Sloane, Apr 12 2016
a(0)=0 prepended by Alois P. Heinz, May 14 2020

A003003 Size of the largest subset of the numbers [1...n] which doesn't contain a 4-term arithmetic progression.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 5, 6, 7, 8, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 17, 17, 18, 18, 18, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 24, 24, 24, 25, 25, 26, 26, 26, 27, 28, 28, 28, 28, 29, 29, 30, 30, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 34
Offset: 1

Views

Author

Keywords

Comments

These subsets have been called 4-free sequences.
Szemeredi's theorem for arithmetic progressions of length 4 asserts that a(n) is o(n) as n -> infinity. - Doron Zeilberger, Mar 26 2008
False g.f. (z^12 + 1 - z^11 - z^10 + z^8 - z^6 + z^5 - z^3 + z)/((z+1)*(z-1)^2) was conjectured by Simon Plouffe in his 1992 dissertation, but in fact is wrong (cf. A136746).

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A selection of sequences related to "no three-term arithmetic progression": A003002, A003003, A003278, A004793, A005047, A005487, A033157, A065825, A092482, A093678, A093679, A093680, A093681, A093682, A094870, A101884, A101886, A101888, A140577, A185256, A208746, A229037.

Extensions

a(52)-a(72) from Rob Pratt, Jul 09 2015

A094870 a(1)=1; for n > 1, a(n) is the minimal positive integer t not equal to a(1), ..., a(n-1) such that t - a(n-i) is not equal to a(n-i) - a(n-2i) for all 1 <= i < n/2.

Original entry on oeis.org

1, 2, 4, 3, 5, 6, 8, 7, 10, 9, 13, 12, 14, 11, 17, 16, 22, 15, 23, 18, 21, 20, 25, 24, 26, 19, 28, 27, 29, 36, 32, 31, 33, 39, 38, 34, 41, 30, 37, 35, 44, 48, 42, 40, 43, 50, 46, 52, 47, 45, 54, 49, 56, 58, 57, 51, 61, 53, 59, 63, 60, 68, 64, 62, 70, 55, 65, 67, 73, 69, 83, 76
Offset: 1

Views

Author

Alec Mihailovs (alec(AT)mihailovs.com), Jun 16 2004

Keywords

Comments

3n/8 <= a(n) < 3n/2 (P. Hegarty).
Conjecture: lim_{n->infinity} a(n)/n = 1 (P. Hegarty).
The Hegarty paper shows that this is a permutation. - Franklin T. Adams-Watters, May 26 2014
Graphically, the sequence {a(n)-n} resembles A293862 (see illustration in Links section). - Rémy Sigrist, Feb 06 2020

Examples

			a(3)=4 because it can't be 1=a(1), 2=a(2) and 3=2*a(3-1)-a(3-2).
		

Crossrefs

Cf. A095689 (inverse permutation), A229037, A293862.

Programs

  • Maple
    A:=proc(n) option remember; local t, S, i; S:={$1..1000} minus {seq(A(i),i=1..n-1)}; t:=min(S[]); i:=1; while i
    				
  • Mathematica
    a[n_] := a[n] = Module[{t, S, i}, S = Union[Range[1000] ~Complement~ Array[a, n-1]]; t = Min[S]; i = 1; While[i < Floor[(n+1)/2], If[t-a[n-i] == a[n-i] - a[n-2i], S = S ~Complement~ {t}; t = Min[S]; i = 1, i++]]; t]; a[1] = 1;
    Table[a[n], {n, 1, 200}] (* Jean-François Alcover, Sep 20 2019, from Maple *)

A100480 a(1)=1 and, for n>1, a(n) is the smallest positive integer such that the subset S(c) of {1,2,3,...,n} defined by S(c)={k|1<=k<=n; a(k)=c} does not contain a 3-term arithmetic progression for any integer c.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 3, 3, 1, 1, 2, 1, 1, 2, 2, 3, 3, 2, 3, 3, 4, 4, 5, 4, 4, 5, 1, 1, 2, 1, 1, 2, 2, 3, 3, 1, 1, 2, 1, 1, 2, 2, 3, 3, 2, 3, 3, 4, 4, 5, 4, 4, 5, 2, 3, 3, 4, 4, 5, 4, 4, 5, 5, 6, 6, 5, 6, 6, 7, 7, 8, 5, 6, 6, 5, 6, 6, 7, 7, 8, 1, 1, 2, 1, 1, 2, 2, 3, 3, 1, 1, 2, 1, 1, 2, 2, 3, 3, 2, 3, 3, 4, 4, 5
Offset: 1

Views

Author

John W. Layman, Nov 22 2004

Keywords

Comments

The sequence of values of n for which a(n)=1 is given by {A005836(i)-1}.

Crossrefs

Programs

  • Python
    # See Links section.

Formula

a(n + 1) = A006997(n) + 1 for any n >= 0. - Rémy Sigrist, Jun 28 2022

A309890 Lexicographically earliest sequence of positive integers without triples in weakly increasing arithmetic progression.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 4, 4, 1, 1, 2, 1, 1, 2, 2, 4, 4, 2, 4, 4, 5, 5, 8, 5, 5, 9, 1, 1, 2, 1, 1, 2, 2, 4, 4, 1, 1, 2, 1, 1, 2, 2, 4, 4, 2, 4, 4, 5, 5, 8, 5, 5, 9, 2, 4, 4, 5, 5, 10, 5, 5, 10, 10, 11, 13, 10, 11, 10, 11, 13, 10, 10, 12, 13, 10, 13, 11, 12, 20, 11, 1, 1, 2, 1, 1, 2, 2, 4, 4, 1, 1, 2, 1, 1, 2, 2, 4, 4, 2
Offset: 1

Views

Author

Sébastien Palcoux, Aug 21 2019

Keywords

Comments

Formal definition: lexicographically earliest sequence of positive integers a(n) such that for any i > 0, there is no n > 0 such that 2a(n+i) = a(n) + a(n+2i) AND a(n) <= a(n+i) <= a(n+2i).
Sequence suggested by Richard Stanley as a variant of A229037. They differ from the 55th term. The numbers n for which a(n) = 1 are given by A003278, or equally by A005836 (Richard Stanley).
The sequence defined by c(n) = 1 if a(n) = 1 and otherwise c(n) = 0 is A039966 (although with a different offset). - N. J. A. Sloane, Dec 01 2019
Pleasant to listen to (button above) with Instrument no. 13: Marimba (and for better listening, save and convert to MP3).

Crossrefs

Programs

  • Python
    from itertools import count, islice
    def A309890_gen(): # generator of terms
        blist = []
        for n in count(0):
            i, j, b = 1, 1, set()
            while n-(i<<1) >= 0:
                x, y = blist[n-2*i], blist[n-i]
                z = (y<<1)-x
                if x<=y<=z:
                    b.add(z)
                    while j in b:
                        j += 1
                i += 1
            blist.append(j)
            yield j
    A309890_list = list(islice(A309890_gen(),30)) # Chai Wah Wu, Sep 12 2023
  • SageMath
    # %attach SAGE/ThreeFree.spyx
    from sage.all import *
    cpdef ThreeFree(int n):
         cdef int i,j,k,s,Li,Lj
         cdef list L,Lb
         cdef set b
         L=[1,1]
         for k in range(2,n):
              b=set()
              for i in range(k):
                   if 2*((i+k)/2)==i+k:
                        j=(i+k)/2
                        Li,Lj=L[i],L[j]
                        s=2*Lj-Li
                        if s>0 and Li<=Lj:
                             b.add(s)
              if 1 not in b:
                   L.append(1)
              else:
                   Lb=list(b)
                   Lb.sort()
                   for t in Lb:
                        if t+1 not in b:
                             L.append(t+1)
                             break
         return L
    

A236335 Lexicographically earliest sequence of positive integers whose graph has no three collinear points.

Original entry on oeis.org

1, 1, 2, 2, 5, 4, 9, 3, 3, 6, 8, 5, 6, 9, 17, 4, 8, 15, 13, 24, 17, 13, 26, 32, 14, 7, 12, 29, 12, 18, 10, 10, 23, 35, 7, 16, 14, 30, 24, 23, 30, 46, 27, 20, 52, 15, 25, 40, 29, 40, 19, 38, 58, 18, 39, 42, 16, 69, 33, 25, 67, 43, 11, 51, 28, 11, 54, 73, 26, 27
Offset: 1

Views

Author

Tanya Khovanova, Jan 22 2014

Keywords

Comments

An integer can't appear more than twice in the sequence, which means the sequence tends to infinity.
An increasing version of this sequence is A236336.

Examples

			Consider a(5). The previous terms are 1,1,2,2. The value of a(5) can't be 1 because points (1,1),(2,1),(5,1) (corresponding to values a(1), a(2), a(5)) are on the same line: y=1. Points (3,2),(4,2),(5,2) are on the same line y=2, so a(5) can't be 2. Points (1,1),(3,2),(5,3) are on the same line: y=x/2+1/2, so a(5) can't be 3. Points (2,1),(3,2),(5,4) are on the same line: y=x-1, so a(5) can't be 4. Thus a(5)=5.
		

Crossrefs

Programs

  • Mathematica
    b[1] = 1;
    b[n_] := b[n] =
      Min[Complement[Range[100],
        Select[Flatten[
          Table[b[k] + (n - k) (b[j] - b[k])/(j - k), {k, n - 2}, {j,
            k + 1, n - 1}]], IntegerQ[#] &]]]
    Table[b[k], {k, 70}]

Formula

a(n) = A236266(n-1) + 1. - Alois P. Heinz, Jan 23 2014

A361933 Lexicographically earliest sequence of positive integers such that no three terms a(j), a(j+k), a(j+2k) (for any j and k) form an arithmetic progression in any order.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 4, 4, 1, 1, 2, 1, 1, 2, 2, 4, 4, 2, 4, 4, 5, 5, 8, 5, 5, 9, 9, 4, 2, 5, 11, 2, 2, 4, 1, 1, 5, 1, 1, 10, 2, 2, 4, 1, 1, 4, 4, 10, 10, 4, 8, 10, 10, 2, 4, 1, 2, 5, 4, 10, 10, 4, 2, 8, 8, 5, 8, 5, 13, 13, 17, 5, 13, 2, 11, 17, 10, 10, 13, 13
Offset: 1

Views

Author

Neal Gersh Tolunsky, Mar 30 2023

Keywords

Comments

First differs from A229037 and A309890 at a(28).
This sequence avoids all six of the six permutations of a set of three integers in arithmetic progression. For example, the set {1,2,3} can be ordered as tuples (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1).
This sequence is part of a family of variants avoiding different permutations of arithmetic progressions at indices in arithmetic progression:
- A100480 (offset 1), A006997 (offset 0): Prohibits 1,1,1 and progressions of common difference 0.
- A309890: Prohibits 1,2,3 or progressions of the form c, c+d, c+2d, for all d >= 0.
- A373111: Prohibits 1,3,2 or progressions of the form c, c+2d, c+d, for all d >= 0.
- A371457: Prohibits 2,1,3 or progressions of the form c, c-d, c+d, for all d >= 0.
- A371632: Prohibits 2,3,1 or progressions of the form c, c+d, c-d, for all d >= 0.
- A373010: Prohibits 3,1,2 or progressions of the form c, c-2d, c-d, for all d>=0.
- A373052: Prohibits 3,2,1 or progressions of the form c, c-d, c-2d, for all d>=0.
With the sequences prohibiting the six permutations above, there are a total of 64 sequences which prohibit some combination of these six permutations of an arithmetic progression. At least two more of these are in the OEIS:
- A229037 ("forest fire sequence"): Prohibits (progressions of the same general form as) 1,2,3 and 3,2,1 .
- A361933 (the present sequence): Prohibits all six permutations.

Examples

			a(28) cannot be 1 because then a(26)=5, a(27)=9, and a(28)=1 could be rearranged to form an arithmetic progression (1, 5, 9). The numbers 2-8 could also create an arithmetic progression so a(28)=9.
		

Crossrefs

Programs

  • PARI
    \\ See Links section.

Formula

a(n) <= (n+1)/2.

A101886 Smallest natural number sequence without any length 4 equidistant arithmetic subsequences.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 14, 15, 16, 18, 19, 20, 22, 24, 27, 28, 29, 31, 32, 35, 36, 37, 39, 41, 42, 43, 47, 48, 50, 51, 53, 55, 58, 60, 61, 63, 65, 66, 68, 70, 71, 72, 77, 78, 80, 82, 85, 86, 87, 89, 90, 91, 94, 95, 96, 98, 99, 100, 102, 103, 104, 107, 109, 110, 111, 114
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 20 2004

Keywords

Examples

			4 is out because of 1,2,3,4. 13 is out because of 1,5,9,13.
		

Crossrefs

A selection of sequences related to "no three-term arithmetic progression": A003002, A003003, A003278, A004793, A005047, A005487, A033157, A065825, A092482, A093678, A093679, A093680, A093681, A093682, A094870, A101884, A101886, A101888, A140577, A185256, A208746, A229037.

A101888 Smallest natural number sequence without any length 5 equidistant arithmetic subsequences.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 37, 38, 39, 40, 43, 44, 45, 46, 48, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 86, 87, 88, 90, 91, 92, 93, 95
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 20 2004

Keywords

Examples

			5 is out because of 1,2,3,4,5. 21 is out because of 1,6,11,16,21.
		

Crossrefs

A selection of sequences related to "no three-term arithmetic progression": A003002, A003003, A003278, A004793, A005047, A005487, A033157, A065825, A092482, A093678, A093679, A093680, A093681, A093682, A094870, A101884, A101886, A101888, A140577, A185256, A208746, A229037.

A276204 a(0) = a(1) = 0. For n>1 a(n) is the smallest nonnegative integer such that there is no arithmetic progression k,m,n (of length 3) such that a(k)+a(m) = a(n).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 4, 4, 1, 4, 4, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 4, 4, 1, 4, 4, 1, 2, 2, 1, 7, 7, 1, 7, 7, 1, 2, 2, 1, 7, 7, 1, 7, 7, 1, 2, 2, 1, 4, 4, 1, 4, 4, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 4, 4, 1, 4, 4, 1, 2, 2, 1, 0, 0, 1, 0, 0, 1, 2, 2, 1, 0, 0, 1, 0
Offset: 0

Views

Author

Michal Urbanski, Aug 24 2016

Keywords

Comments

The sequence has the same set of values as A033627.
The sequence has a kind of a "triple rhythm", compare the distribution of zeros to the Cantor set.
Conjecture 1:
One can calculate a(n) in a following, non-recursive way, using the ternary representation of n.
Let n>=0 be an integer. We consider two cases:
1. There is no digit 2 in the ternary representation of n. Then a(n) = 0.
2. There is a digit 2 in the ternary representation of n.
Let i be the number of the position (counting from right) of the rightmost digit 2 in ternary representation of n, then a(n) = A033627(i).
For example: let n = 19. The ternary representation of 19 is 201. The rightmost digit 2 in the number 201 is on the third position (counting from right), so a(19) = A033627(3) = 4.
Conjecture 2:
The sequence can be generated in a following way:
Start with a zero. Take three consecutive copies of all you have, replace all zeros in the third copy with the next value of A033627, repeat.
Both of these conjectures can be generalized for similarly defined sequences where the length of the arithmetic progression in the definition (in A276204 it is 3) is a prime number, see A276206.
The assumption about primality is essential, for complex lengths of the arithmetic progression the sequence is irregular, see A276205.

Examples

			For n = 6 we have that:
a(6)>0, because a(0)+a(3)=0 and 0,3,6 is an arithmetic progression.
a(6)>1, because a(4)+a(5)=0 and 4,5,6 is an arithmetic progression.
There is no such arithmetic progression k,m,6 that a(k)+a(m) = 2, so a(6) = 2.
		

Crossrefs

Cf. A276205 (length 4), A276206 (length 5), A276207 (any length).
Previous Showing 11-20 of 59 results. Next