cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 51 results. Next

A367399 Number of strict integer partitions of n whose length is not the sum of any two distinct parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 5, 7, 8, 10, 13, 15, 19, 22, 27, 31, 38, 43, 51, 59, 70, 79, 94, 107, 124, 143, 165, 188, 218, 248, 283, 324, 369, 419, 476, 540, 610, 691, 778, 878, 987, 1111, 1244, 1399, 1563, 1750, 1954, 2184, 2432, 2714, 3016, 3358, 3730, 4143
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2023

Keywords

Examples

			The strict partition y = (6,4,2,1) has semi-sums {3,5,6,7,8,10}, which do not include 4, so y is counted under a(13).
The a(6) = 3 through a(13) = 15 strict partitions:
  (6)    (7)    (8)      (9)      (10)     (11)     (12)       (13)
  (4,2)  (4,3)  (5,3)    (5,4)    (6,4)    (6,5)    (7,5)      (7,6)
  (5,1)  (5,2)  (6,2)    (6,3)    (7,3)    (7,4)    (8,4)      (8,5)
         (6,1)  (7,1)    (7,2)    (8,2)    (8,3)    (9,3)      (9,4)
                (4,3,1)  (8,1)    (9,1)    (9,2)    (10,2)     (10,3)
                         (4,3,2)  (5,3,2)  (10,1)   (11,1)     (11,2)
                         (5,3,1)  (5,4,1)  (5,4,2)  (5,4,3)    (12,1)
                                  (6,3,1)  (6,3,2)  (6,4,2)    (6,4,3)
                                           (6,4,1)  (6,5,1)    (6,5,2)
                                           (7,3,1)  (7,3,2)    (7,4,2)
                                                    (7,4,1)    (7,5,1)
                                                    (8,3,1)    (8,3,2)
                                                    (5,4,2,1)  (8,4,1)
                                                               (9,3,1)
                                                               (6,4,2,1)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A365924 counts incomplete partitions, strict A365831.
A236912 counts partitions with no semi-sum of the parts, ranks A364461.
A237667 counts sum-free partitions, sum-full A237668.
A366738 counts semi-sums of partitions, strict A366741.
A367403 counts partitions without covering semi-sums, strict A367411.
Triangles:
A008284 counts partitions by length, strict A008289.
A365541 counts subsets with a semi-sum k.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#,{2}], Length[#]]&]], {n,0,15}]

A364671 Number of subsets of {1..n} containing all of their own first differences.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 23, 34, 58, 96, 171, 302, 565, 1041, 1969, 3719, 7105, 13544, 25999, 49852, 95949, 184658, 356129, 687068, 1327540, 2566295, 4966449, 9617306, 18640098, 36150918, 70166056, 136272548, 264844111, 515036040, 1002211421, 1951345157, 3801569113
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2023

Keywords

Examples

			The subset {1,2,4,5,10,14} has differences (1,2,1,5,4) so is counted under a(14).
The a(0) = 1 through a(5) = 14 subsets:
  {}  {}   {}     {}       {}         {}
      {1}  {1}    {1}      {1}        {1}
           {2}    {2}      {2}        {2}
           {1,2}  {3}      {3}        {3}
                  {1,2}    {4}        {4}
                  {1,2,3}  {1,2}      {5}
                           {2,4}      {1,2}
                           {1,2,3}    {2,4}
                           {1,2,4}    {1,2,3}
                           {1,2,3,4}  {1,2,4}
                                      {1,2,3,4}
                                      {1,2,3,5}
                                      {1,2,4,5}
                                      {1,2,3,4,5}
		

Crossrefs

For differences of all strict pairs we have A054519, for partitions A007862.
For "disjoint" instead of "subset" we have A364463, partitions A363260.
For "non-disjoint" we have A364466, partitions A364467 (strict A364536).
The complement is counted by A364672, partitions A364673, A364674, A364675.
First differences of terms are A364752, complement A364753.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], SubsetQ[#,Differences[#]]&]], {n,0,10}]

Extensions

More terms from Rémy Sigrist, Aug 06 2023

A365069 Number of subsets of {1..n} containing n and some element equal to the sum of two or more distinct other elements. A variation of non-binary sum-full subsets without re-usable elements.

Original entry on oeis.org

0, 0, 0, 1, 2, 7, 17, 41, 88, 201, 418, 892, 1838, 3798, 7716, 15740
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2023

Keywords

Comments

The complement is counted by A365071. The binary case is A364756. Allowing elements to be re-used gives A365070. A version for partitions (but not requiring n) is A237668.

Examples

			The subset {2,4,6} has 6 = 4 + 2 so is counted under a(6).
The subset {1,2,4,7} has 7 = 4 + 2 + 1 so is counted under a(7).
The subset {1,4,5,8} has 5 = 4 + 1 so is counted under a(8).
The a(0) = 0 through a(6) = 17 subsets:
  .  .  .  {1,2,3}  {1,3,4}    {1,4,5}      {1,5,6}
                    {1,2,3,4}  {2,3,5}      {2,4,6}
                               {1,2,3,5}    {1,2,3,6}
                               {1,2,4,5}    {1,2,4,6}
                               {1,3,4,5}    {1,2,5,6}
                               {2,3,4,5}    {1,3,4,6}
                               {1,2,3,4,5}  {1,3,5,6}
                                            {1,4,5,6}
                                            {2,3,4,6}
                                            {2,3,5,6}
                                            {2,4,5,6}
                                            {1,2,3,4,6}
                                            {1,2,3,5,6}
                                            {1,2,4,5,6}
                                            {1,3,4,5,6}
                                            {2,3,4,5,6}
                                            {1,2,3,4,5,6}
		

Crossrefs

The complement w/ re-usable parts is A288728, first differences of A007865.
First differences of A364534.
The binary complement is A364755, first differences of A085489.
The binary version is A364756, first differences of A088809.
The version with re-usable parts is A365070, first differences of A093971.
The complement is counted by A365071, first differences of A151897.
A124506 counts nonnegative combination-free subsets, differences of A326083.
A365046 counts nonnegative combination-full subsets, differences of A364914.
Strict partitions: A116861, A364272, A364349, A364350, A364839, A364916.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&Intersection[#, Total/@Subsets[#, {2,Length[#]}]]!={}&]],{n,0,10}]

Formula

a(n) = 2^(n-1) - A365070(n).
First differences of A364534.

A364675 Number of integer partitions of n whose nonzero first differences are a submultiset of the parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 7, 7, 10, 12, 15, 15, 26, 25, 35, 45, 55, 60, 86, 94, 126, 150, 186, 216, 288, 328, 407, 493, 610, 699, 896, 1030, 1269, 1500, 1816, 2130, 2620, 3029, 3654, 4300, 5165, 5984, 7222, 8368, 9976, 11637, 13771, 15960, 18978, 21896, 25815, 29915
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2023

Keywords

Comments

Conjecture: For subsets of {1..n} instead of partitions of n we have A101925.
Conjecture: The strict version is A154402.

Examples

			The partition y = (3,2,1,1) has first differences (1,1,0), and (1,1) is a submultiset of y, so y is counted under a(7).
The a(1) = 1 through a(8) = 10 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (221)    (33)      (421)      (44)
             (111)  (211)   (2111)   (42)      (2221)     (422)
                    (1111)  (11111)  (222)     (3211)     (2222)
                                     (2211)    (22111)    (4211)
                                     (21111)   (211111)   (22211)
                                     (111111)  (1111111)  (32111)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For subsets of {1..n} we appear to have A101925, A364671, A364672.
The strict case (no differences of 0) appears to be A154402.
Starting with the distinct parts gives A342337.
For disjoint multisets: A363260, subsets A364463, strict A364464.
For overlapping multisets: A364467, ranks A364537, strict A364536.
For subsets instead of submultisets we have A364673.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A236912 counts sum-free partitions, complement A237113.
A325325 counts partitions with distinct first differences.

Programs

  • Mathematica
    submultQ[cap_,fat_] := And@@Function[i,Count[fat,i] >= Count[cap,i]] /@ Union[List@@cap];
    Table[Length[Select[IntegerPartitions[n], submultQ[Differences[Union[#]],#]&]], {n,0,30}]

A365068 Number of integer partitions of n with some part that can be written as a nonnegative linear combination of the other distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 7, 10, 16, 23, 34, 44, 67, 85, 119, 157, 210, 268, 360, 453, 592, 748, 956, 1195, 1520, 1883, 2365, 2920, 3628, 4451, 5494, 6702, 8211, 9976, 12147, 14666, 17776, 21389, 25774, 30887, 37035, 44224, 52819, 62836, 74753, 88614, 105062, 124160
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2023

Keywords

Comments

These may be called "non-binary nonnegative combination-full" partitions.
Does not necessarily include all non-strict partitions (A047967).

Examples

			The partition (5,4,3,3) has no part that can be written as a nonnegative linear combination of the others, so is not counted under a(15).
The partition (6,4,3,2) has 6 = 1*2 + 1*4, so is counted under a(15). The combinations 6 = 2*3 = 3*2 and 4 = 2*2 can also be used.
The a(3) = 1 through a(8) = 16 partitions:
  (21)  (31)   (41)    (42)     (61)      (62)
        (211)  (221)   (51)     (331)     (71)
               (311)   (321)    (421)     (422)
               (2111)  (411)    (511)     (431)
                       (2211)   (2221)    (521)
                       (3111)   (3211)    (611)
                       (21111)  (4111)    (3221)
                                (22111)   (3311)
                                (31111)   (4211)
                                (211111)  (5111)
                                          (22211)
                                          (32111)
                                          (41111)
                                          (221111)
                                          (311111)
                                          (2111111)
		

Crossrefs

The complement for sums instead of combinations is A237667, binary A236912.
For sums instead of combinations we have A237668, binary A237113.
The strict case is A364839, complement A364350.
Allowing equal parts in the combination gives A364913.
For subsets instead of partitions we have A364914, complement A326083.
The complement is A364915.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A323092 counts double-free partitions, ranks A320340.
A364912 counts linear combinations of partitions of k.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]}, Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], Function[ptn,Or@@Table[combs[ptn[[k]], DeleteCases[ptn,ptn[[k]]]]!={}, {k,Length[ptn]}]]]],{n,0,5}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365068(n):
        if n <= 1: return 0
        alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 0
        for p in partitions(n,k=n-1):
            s = set(p)
            if any(set(t).issubset(s-{q}) for q in s for t in alist[q]):
                c += 1
        return c # Chai Wah Wu, Sep 20 2023

Extensions

a(31)-a(47) from Chai Wah Wu, Sep 20 2023

A365071 Number of subsets of {1..n} containing n such that no element is a sum of distinct other elements. A variation of non-binary sum-free subsets without re-usable elements.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 15, 23, 40, 55, 94, 132, 210, 298, 476, 644, 1038, 1406, 2149, 2965, 4584, 6077, 9426, 12648, 19067, 25739, 38958, 51514, 78459, 104265, 155436, 208329, 312791, 411886, 620780, 823785, 1224414, 1631815, 2437015, 3217077, 4822991
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2023

Keywords

Comments

The complement is counted by A365069. The binary version is A364755, complement A364756. For re-usable parts we have A288728, complement A365070.

Examples

			The subset {1,3,4,6} has 4 = 1 + 3 so is not counted under a(6).
The subset {2,3,4,5,6} has 6 = 2 + 4 and 4 = 1 + 3 so is not counted under a(6).
The a(0) = 0 through a(6) = 15 subsets:
  .  {1}  {2}    {3}    {4}      {5}      {6}
          {1,2}  {1,3}  {1,4}    {1,5}    {1,6}
                 {2,3}  {2,4}    {2,5}    {2,6}
                        {3,4}    {3,5}    {3,6}
                        {1,2,4}  {4,5}    {4,6}
                        {2,3,4}  {1,2,5}  {5,6}
                                 {1,3,5}  {1,2,6}
                                 {2,4,5}  {1,3,6}
                                 {3,4,5}  {1,4,6}
                                          {2,3,6}
                                          {2,5,6}
                                          {3,4,6}
                                          {3,5,6}
                                          {4,5,6}
                                          {3,4,5,6}
		

Crossrefs

First differences of A151897.
The version with re-usable parts is A288728 first differences of A007865.
The binary version is A364755, first differences of A085489.
The binary complement is A364756, first differences of A088809.
The complement is counted by A365069, first differences of A364534.
The complement w/ re-usable parts is A365070, first differences of A093971.
A108917 counts knapsack partitions, strict A275972.
A124506 counts combination-free subsets, differences of A326083.
A364350 counts combination-free strict partitions, complement A364839.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&Intersection[#, Total/@Subsets[#,{2,Length[#]}]]=={}&]], {n,0,10}]

Formula

a(n) + A365069(n) = 2^(n-1).
First differences of A151897.

Extensions

a(14) onwards added (using A151897) by Andrew Howroyd, Jan 13 2024

A364752 Number of subsets of {1..n} containing n and all first differences.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 9, 11, 24, 38, 75, 131, 263, 476, 928, 1750, 3386, 6439, 12455, 23853, 46097, 88709, 171471, 330939, 640472, 1238755, 2400154, 4650857, 9022792, 17510820, 34015138, 66106492, 128571563, 250191929, 487175381, 949133736, 1850223956, 3608650389
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2023

Keywords

Examples

			The a(1) = 1 through a(6) = 9 subsets:
  {1}  {2}    {3}      {4}        {5}          {6}
       {1,2}  {1,2,3}  {2,4}      {1,2,3,5}    {3,6}
                       {1,2,4}    {1,2,4,5}    {2,4,6}
                       {1,2,3,4}  {1,2,3,4,5}  {1,2,3,6}
                                               {1,2,4,6}
                                               {1,2,3,4,6}
                                               {1,2,3,5,6}
                                               {1,2,4,5,6}
                                               {1,2,3,4,5,6}
		

Crossrefs

Partial sums are A364671, complement A364672.
The complement is counted by A364753.
A054519 counts subsets containing differences, A326083 containing sums.
A364463 counts subsets disjoint from differences, complement A364466.
A364673 counts partitions containing differences, A364674, A364675.

Programs

  • Mathematica
    Table[If[n==0,1,Length[Select[Subsets[Range[n]], MemberQ[#,n]&&SubsetQ[#,Differences[#]]&]]],{n,0,10}]

Extensions

More terms from Rémy Sigrist, Aug 06 2023

A367107 Numbers m not divisible by prime(bigomega(m)). Heinz numbers of integer partitions whose length is not a part (counted by A229816).

Original entry on oeis.org

3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 85
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Crossrefs

Partitions of this type are counted by A229816.
The complement is A325761, counted by A002865.
If length is not a subset-sum: A367225, count A367213, complement A367224.
A005117 ranks strict integer partitions, counted by A000009.
A066208 ranks partitions into odd parts, also counted by A000009.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A237667 counts sum-free partitions, ranks A364531.
A237668 counts sum-full partitions, sum-free A364532.

Programs

  • Mathematica
    Select[Range[2,100],!Divisible[#,Prime[PrimeOmega[#]]]&]

A364753 Number of subsets of {1..n} containing n but not containing all first differences.

Original entry on oeis.org

0, 0, 0, 2, 4, 12, 23, 53, 104, 218, 437, 893, 1785, 3620, 7264, 14634, 29382, 59097, 118617, 238291, 478191, 959867, 1925681, 3863365, 7748136, 15538461, 31154278, 62458007, 125194936, 250924636, 502855774, 1007635332, 2018912085, 4044775367, 8102759211, 16230735448, 32509514412, 65110826347
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2023

Keywords

Comments

In other words, subsets containing both n and some element that is not the difference of two consecutive elements.

Examples

			The a(1) = 0 through a(6) = 23 subsets:
  .  .  {1,3}  {1,4}    {1,5}      {1,6}
        {2,3}  {3,4}    {2,5}      {2,6}
               {1,3,4}  {3,5}      {4,6}
               {2,3,4}  {4,5}      {5,6}
                        {1,2,5}    {1,2,6}
                        {1,3,5}    {1,3,6}
                        {1,4,5}    {1,4,6}
                        {2,3,5}    {1,5,6}
                        {2,4,5}    {2,3,6}
                        {3,4,5}    {2,5,6}
                        {1,3,4,5}  {3,4,6}
                        {2,3,4,5}  {3,5,6}
                                   {4,5,6}
                                   {1,2,5,6}
                                   {1,3,4,6}
                                   {1,3,5,6}
                                   {1,4,5,6}
                                   {2,3,4,6}
                                   {2,3,5,6}
                                   {2,4,5,6}
                                   {3,4,5,6}
                                   {1,3,4,5,6}
                                   {2,3,4,5,6}
		

Crossrefs

Partial sums are A364672, complement A364671.
The complement is counted by A364752.
A054519 counts subsets containing differences, A326083 containing sums.
A364463 counts subsets disjoint from differences, complement A364466.
A364673, A364674, A364675 count partitions containing differences.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&!SubsetQ[#,Differences[#]]&]],{n,0,10}]

Extensions

More terms from Giorgos Kalogeropoulos, Aug 07 2023

A365323 Number of integer partitions with sum < n whose distinct parts cannot be linearly combined using all positive coefficients to obtain n.

Original entry on oeis.org

0, 0, 1, 1, 4, 3, 9, 7, 15, 16, 29, 23, 47, 43, 74, 65, 114, 100, 174, 153, 257, 228, 368, 312, 530, 454, 736, 645, 1025, 902, 1402, 1184, 1909, 1626, 2618, 2184, 3412, 2895, 4551, 3887, 5966, 5055, 7796, 6509, 10244, 8462, 13060, 10881, 16834, 14021, 21471
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2023

Keywords

Examples

			The partition y = (3,3,2) has distinct parts {2,3}, and we have 9 = 3*2 + 1*3, so y is not counted under a(9).
The a(3) = 1 through a(10) = 16 partitions:
  (2)  (3)  (2)    (4)    (2)      (3)    (2)        (3)
            (3)    (5)    (3)      (5)    (4)        (4)
            (4)    (3,2)  (4)      (6)    (5)        (6)
            (2,2)         (5)      (7)    (6)        (7)
                          (6)      (3,3)  (7)        (8)
                          (2,2)    (4,3)  (8)        (9)
                          (3,3)    (5,2)  (2,2)      (3,3)
                          (4,2)           (4,2)      (4,4)
                          (2,2,2)         (4,3)      (5,2)
                                          (4,4)      (5,3)
                                          (5,3)      (5,4)
                                          (6,2)      (6,3)
                                          (2,2,2)    (7,2)
                                          (4,2,2)    (3,3,3)
                                          (2,2,2,2)  (4,3,2)
                                                     (5,2,2)
		

Crossrefs

Complement for subsets: A088314 or A365042, nonnegative A365073 or A365542.
For strict partitions we have A088528, nonnegative coefficients A365312.
For length-2 subsets we have A365321 (we use n instead of n-1).
For subsets we have A365322 or A365045, nonnegative coefficients A365380.
For nonnegative coefficients we have A365378, complement A365379.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364350 counts combination-free strict partitions, non-strict A364915.
A364839 counts combination-full strict partitions, non-strict A364913.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Join@@IntegerPartitions/@Range[n-1],combp[n,Union[#]]=={}&]],{n,10}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365323(n):
        a = {tuple(sorted(set(p))) for p in partitions(n)}
        return sum(1 for k in range(1,n) for d in partitions(k) if tuple(sorted(set(d))) not in a) # Chai Wah Wu, Sep 12 2023

Extensions

a(21)-a(51) from Chai Wah Wu, Sep 12 2023
Previous Showing 41-50 of 51 results. Next