A097835
First differences of Chebyshev polynomials S(n,27) = A097781(n) with Diophantine property.
Original entry on oeis.org
1, 26, 701, 18901, 509626, 13741001, 370497401, 9989688826, 269351100901, 7262490035501, 195817879857626, 5279820266120401, 142359329305393201, 3838422070979496026, 103495036587140999501, 2790527565781827490501
Offset: 0
All positive solutions of Pell equation x^2 - 29*y^2 = -4 are (5=5*1,1), (140=5*28,26), (3775=5*755,701), (101785=5*20357,18901), ...
Cf. similar sequences listed in
A238379.
-
a:=[1,26];; for n in [3..30] do a[n]:=27*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 12 2019
-
m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x)/(1-27*x+x^2) )); // G. C. Greubel, Jan 12 2019
-
LinearRecurrence[{27,-1},{1,26},30] (* Harvey P. Dale, May 31 2013 *)
-
my(x='x+O('x^30)); Vec((1-x)/(1-27*x+x^2)) \\ G. C. Greubel, Jan 12 2019
-
((1-x)/(1-27*x+x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 12 2019
A153111
Solutions of the Pell-like equation 1 + 6*A*A = 7*B*B, with A, B integers.
Original entry on oeis.org
1, 25, 649, 16849, 437425, 11356201, 294823801, 7654062625, 198710804449, 5158826853049, 133930787374825, 3477041644892401, 90269151979827601, 2343520909830625225, 60841274503616428249, 1579529616184196509249, 41006928746285492812225
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Luigi Cimmino, Algebraic relations for recursive sequences, arXiv:math/0510417 [math.NT], 2005-2008.
- Jeroen Demeyer, Diophantine sets of polynomials over number fields, arXiv:0807.1970 [math.NT], 2008.
- Franz Lemmermeyer, Conics - a Poor Man's Elliptic Curves, arXiv:math/0311306 [math.NT], 2003.
- Index entries for linear recurrences with constant coefficients, signature (26,-1).
Cf.
A002315,
A001653,
A054320,
A072256,
A001078,
A028230,
A001570,
A049629,
A007805,
A133283,
A140480.
Cf. similar sequences listed in
A238379.
-
I:=[1,25]; [n le 2 select I[n] else 26*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 22 2014
-
CoefficientList[Series[(1 - x)/(x^2 - 26 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 22 2014 *)
LinearRecurrence[{26, -1}, {1, 25}, 20] (* Jean-François Alcover, Jan 07 2019 *)
-
Vec(-x*(x-1)/(x^2-26*x+1) + O(x^100)) \\ Colin Barker, Feb 20 2014
A159668
Expansion of (1 - x)/(1 - 28*x + x^2).
Original entry on oeis.org
1, 27, 755, 21113, 590409, 16510339, 461699083, 12911063985, 361048092497, 10096435525931, 282339146633571, 7895399670214057, 220788851619360025, 6174192445671866643, 172656599627192905979, 4828210597115729500769, 135017240119613233115553
Offset: 0
Cf. similar sequences listed in
A238379.
-
[n le 2 select 27^(n-1) else 28*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 25 2014
-
for a from 1 by 2 to 100000 do b:=sqrt((15*a*a-2)/13): if (trunc(b)=b) then
n:=(a*a-1)/13: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: endif: enddo:
# Second program
seq(simplify(ChebyshevU(n,14) -ChebyshevU(n-1,14)), n=0..40); # G. C. Greubel, Sep 26 2022
-
CoefficientList[Series[(1-x)/(1-28x+x^2), {x,0,40}], x] (* Vincenzo Librandi, Feb 25 2014 *)
LinearRecurrence[{28,-1},{1,27},40] (* Harvey P. Dale, Apr 09 2014 *)
-
Vec((-x+1)/(x^2-28*x+1) + O(x^100)) \\ Colin Barker, Feb 23 2014
-
def A159668(n): return chebyshev_U(n,14) - chebyshev_U(n-1,14)
[A159668(n) for n in range(40)] # G. C. Greubel, Sep 26 2022
New name and offset changed to 0 from
Joerg Arndt, Feb 23 2014
A159664
The general form of the recurrences are the a(j), b(j) and n(j) solutions of the 2 equations problem: 11*n(j) + 1 = a(j)*a(j) and 13*n(j) + 1 = b(j)*b(j), with positive integer numbers.
Original entry on oeis.org
1, 23, 551, 13201, 316273, 7577351, 181540151, 4349386273, 104203730401, 2496540143351, 59812759710023, 1433009692897201, 34332419869822801, 822545067182850023, 19706749192518577751, 472139435553263016001, 11311639704085793806273, 271007213462505788334551
Offset: 1
Cf. similar sequences listed in
A238379.
-
[n le 2 select 23^(n-1) else 24*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 21 2014
-
for a from 1 by 2 to 100000 do b:=sqrt((13*a*a-2)/11): if (trunc(b)=b) then
n:=(a*a-1)/11: La:=[La),a]:Lb:=[op(Lb),b]: Ln:=[op(Ln),n]: end if: end do:
# Second program
seq(simplify(ChebyshevU(n-1,12) - ChebyshevU(n-2,12)), n=1..30); # G. C. Greubel, Sep 27 2022
-
CoefficientList[Series[(1-x)/(1-24x+x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 21 2014 *)
LinearRecurrence[{24,-1}, {1,23}, 30] (* G. C. Greubel, Sep 27 2022 *)
-
Vec(x*(1-x)/(1-24*x+x^2) + O(x^100)) \\ Colin Barker, Feb 19 2014
-
a(n) = round((12+sqrt(143))^(-n)*(13+sqrt(143)-(-13+sqrt(143))*(12+sqrt(143))^(2*n))/26) \\ Colin Barker, Jul 25 2016
-
def A159664(n): return chebyshev_U(n-1,12) - chebyshev_U(n-2,12)
[A159664(n) for n in range(1,30)] # G. C. Greubel, Sep 27 2022
A159674
Expansion of (1 - x)/(1 - 32*x + x^2).
Original entry on oeis.org
1, 31, 991, 31681, 1012801, 32377951, 1035081631, 33090234241, 1057852414081, 33818187016351, 1081124132109151, 34562154040476481, 1104907805163138241, 35322487611179947231, 1129214695752595173151, 36099547776471865593601, 1154056314151347103822081
Offset: 0
Cf. similar sequences listed in
A238379.
-
A029548:= func< n | Evaluate(ChebyshevSecond(n),16) >;
[A029548(n+1) -A029548(n): n in [0..30]]; // G. C. Greubel, Sep 25 2022
-
for a from 1 by 2 to 100000 do b:=sqrt((17*a*a-2)/15): if (trunc(b)=b) then
n:=(a*a-1)/15: La:=[op(La),a]:Lb:=[op(Lb),b]:Ln:=[op(Ln),n]: endif: enddo:
# Second program
seq(simplify(ChebyshevU(n, 16) -ChebyshevU(n-1, 16)), n=0..30); # G. C. Greubel, Sep 25 2022
-
CoefficientList[Series[(1-x)/(1-32*x+x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *)
LinearRecurrence[{32,-1},{1,31},30] (* Harvey P. Dale, Mar 21 2017 *)
-
concat([0], Vec((-x+1)/(x^2-32*x+1) + O(x^100))) \\ Colin Barker, Feb 24 2014
-
def A159674(n): return chebyshev_U(n, 16) - chebyshev_U(n-1, 16)
[A159674(n) for n in range(31)] # G. C. Greubel, Sep 25 2022
A161595
The list of the A values in the common solutions to the 2 equations 15*k+1=A^2, 19*k+1=B^2.
Original entry on oeis.org
1, 16, 271, 4591, 77776, 1317601, 22321441, 378146896, 6406175791, 108526841551, 1838550130576, 31146825378241, 527657481299521, 8939030356713616, 151435858582831951, 2565470565551429551, 43461563755791470416, 736281113282903567521, 12473317362053569177441
Offset: 1
Cf. similar sequences listed in
A238379.
-
t:=0: for a from 1 to 1000000 do b:=sqrt((19*a^2-4)/15):
if (trunc(b)=b) then t:=t+1: n:=(a^2-1)/15: print(t,a,b,n): end if: end do:
-
Rest[CoefficientList[Series[x (1-x)/(1-17x+x^2),{x,0,40}],x]] (* or *) LinearRecurrence[{17,-1},{1,16},20] (* Harvey P. Dale, Oct 12 2012 *)
-
Vec(x*(1-x)/(1-17*x+x^2) + O(x^100)) \\ Colin Barker, Feb 14 2014
A111216
a(n) = 31*a(n-1)-a(n-2).
Original entry on oeis.org
1, 30, 929, 28769, 890910, 27589441, 854381761, 26458245150, 819351217889, 25373429509409, 785756963573790, 24333092441278081, 753540108716046721, 23335410277756170270, 722644178501725231649, 22378634123275726010849, 693015013643045781104670
Offset: 0
Cf. similar sequences listed in
A238379.
-
I:=[1,30]; [n le 2 select I[n] else 31*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 26 2014
-
CoefficientList[Series[(1 - x)/(1 - 31 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *)
-
Vec((1-x)/(1-31*x+x^2) + O(x^100)) \\ Colin Barker, Feb 24 2014
A269028
a(n) = 40*a(n - 1) - a(n - 2) for n>1, a(0) = 1, a(1) = 1.
Original entry on oeis.org
1, 1, 39, 1559, 62321, 2491281, 99588919, 3981065479, 159143030241, 6361740144161, 254310462736199, 10166056769303799, 406387960309415761, 16245352355607326641, 649407706263983649879, 25960062898203738668519, 1037753108221885563090881
Offset: 0
Cf.
A001519,
A001835,
A001653,
A049685,
A070997,
A070998,
A072256,
A078922,
A160682,
A007805,
A075839,
A157014,
A159664,
A159668,
A157877,
A238379,
A097315.
-
[n le 2 select 1 else 40*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 19 2016
-
Table[Cosh[n Log[20 + Sqrt[399]]] - Sqrt[19/21] Sinh[n Log[20 + Sqrt[399]]], {n, 0, 17}]
Table[(2^(-n - 2) (38 (40 - 2 Sqrt[399])^n + 2 Sqrt[399] (40 - 2 Sqrt[399])^n - 38 (40 + 2 Sqrt[399])^n + 2 Sqrt[399] (40 + 2 Sqrt[399])^n))/Sqrt[399], {n, 0, 17}]
LinearRecurrence[{40, -1}, {1, 1}, 17]
Comments