cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A286008 Numbers n such that 17^n is the highest power of 17 dividing A240751(n).

Original entry on oeis.org

3265, 5322, 7209, 15545, 56020, 79639, 90989, 176208, 183615, 198389, 256201, 263608, 287226, 329758, 362670, 400301, 408639, 409570, 448157, 454945, 461127, 479338, 518784, 545839, 585807, 595159, 612439, 638465, 647408, 651957, 667589, 708233, 728683, 732301, 747752
Offset: 1

Views

Author

David A. Corneth, May 01 2017

Keywords

Crossrefs

A286009 Numbers n such that 19^n is the highest power of 19 dividing A240751(n).

Original entry on oeis.org

379852, 1937399, 3213587, 3693182, 3929909, 5297908, 5491483, 5558857, 5585137, 6073350, 6098602, 6239688, 6456726, 6621601, 7628332, 7676090, 7784700, 11322293, 11585988, 11802069, 11859219, 12408934, 12591257, 13173700, 13379558, 13691715, 13714221, 14614581, 14648522, 14984212, 15054150
Offset: 1

Views

Author

David A. Corneth, May 01 2017

Keywords

Crossrefs

A285312 Records in A240751.

Original entry on oeis.org

2, 6, 12, 15, 21, 50, 85, 100, 182, 210, 215, 364, 553, 560, 854, 931, 1120, 1870, 2058, 2422, 2653, 4477, 6369, 7667, 10373, 10934, 13794, 14377, 15411, 20163, 25542, 27423, 28094, 34398, 52275, 59085, 85170, 115362, 131690, 138944, 143143, 154323, 248761, 265850, 271040
Offset: 1

Views

Author

Robert G. Wilson v, Apr 17 2017

Keywords

Crossrefs

Cf. A240751.

Programs

  • Mathematica
    (* first run the Mmca in A240751, then *) records[s_List] := Block[{k = 1, lmt = 1 + Length@s, lst = {}, mx = 0}, While[k < lmt, If[s[[k]] > mx, mx = s[[k]]; AppendTo[lst, mx]]; k++]; lst]; records[ Array[f, 250000]]

A071626 Number of distinct exponents in the prime factorization of n!.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1

Views

Author

Labos Elemer, May 29 2002

Keywords

Comments

Erdős proved that there exist two constants c1, c2 > 0 such that c1 (n / log(n))^(1/2) < a(n) < c2 (n / log(n))^(1/2). - Carlo Sanna, May 28 2019
R. Heyman and R. Miraj proved that the cardinality of the set { floor(n/p) : p <= n, p prime } is same as the number of distinct exponents in the prime factorization of n!. - Md Rahil Miraj, Apr 05 2024

Examples

			n=7: 7! = 5040 = 2*2*2*2*3*3*5*7; three different exponents arise: 4, 2 and 1; a(7)=3.
n=7: { floor(7/p) : p <= 7, p prime } = {3,2,1}. So, its cardinality is 3. - _Md Rahil Miraj_, Apr 05 2024
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] Table[Length[Union[ep[w! ]]], {w, 1, 100}]
    Table[Length[Union[Last/@If[n==1,{},FactorInteger[n!]]]],{n,30}] (* Gus Wiseman, May 15 2019 *)
  • PARI
    a(n) = #Set(factor(n!)[, 2]); \\ Michel Marcus, Sep 05 2017

Formula

a(n) = A071625(n!) = A323023(n!,3). - Gus Wiseman, May 15 2019

A240905 Smallest k such that the minimal factor in factorization of k! over distinct terms of A050376 is A050376(n), or a(n) = 0 if there is no such k.

Original entry on oeis.org

2, 12, 20, 6, 10, 130, 180, 240, 480, 597, 901, 40537, 15841, 23401, 36720, 112321, 20377, 177842, 101755, 855369, 2333282, 654549, 15078026, 9206403, 5829606, 75690506, 64946036, 650025768, 1100265039, 1966444000, 6660851430, 1505032794, 7305026242, 42063043872, 54868098259
Offset: 1

Views

Author

Vladimir Shevelev, Apr 14 2014

Keywords

Comments

a(n) is the smallest k such that the minimal infinitary divisor of k! is A050376(n).
Conjecture: a(n) > 0 for all n.
a(28) > 2.5*10^8, if it exists. - Amiram Eldar, Jun 18 2025
a(34) > 2.8*10^10 if it exists. - David A. Corneth, Jun 19 2025

Examples

			Let n = 4. A050376(4)=5. For k = 2, 3, 4, 5, 6, we have the following factorizations over distinct terms of A050376: 2! = 2, 3! = 2*3, 4! = 2*3*4, 5! = 2*3*4*5, 6! = 5*9*16. Only the last factorization begins with 5. So a(4) = 6.
From _David A. Corneth_, Jun 19 2025: (Start)
a(6) = 130. Once we checked that a(6) is > 125 we try 126. The minimal factor of k! into distinct products must be A050376(6) = 8. For 126! we have the 5-adic valuation of 31 so the minimal factor is at most 5.
To get rid of the 5 we try the next candidate > 126 that is a multiple of 5. This is 130. We can just skip 127, 128 and 129 altogether. It turns out this smallest factor for 130! is 8 giving the value for a(6). (End)
		

Crossrefs

Programs

  • PARI
    \\ See Corneth link
    
  • PARI
    \\ See Eldar link

Extensions

More terms from Peter J. C. Moses, Apr 19 2014
a(19)-a(27) from Amiram Eldar, Jun 18 2025
a(28)-a(35) from David A. Corneth, Jun 18, Jun 21 2025

A240906 Maximal A050376-factors in factorization of factorials over distinct terms of A050376.

Original entry on oeis.org

2, 3, 4, 5, 16, 81, 256, 65536, 4294967296, 18446744073709551616, 340282366920938463463374607431768211456, 115792089237316195423570985008687907853269984665640564039457584007913129639936
Offset: 2

Views

Author

Vladimir Shevelev, Apr 14 2014

Keywords

Comments

In contrast to prime power factorization of n! where maximal prime does not exceed n, in the considered factorization of n!, the maximal A050376-factor could be much greater than n. For example, for n=18, it is 65536.
Essentially, a(n) is A177334 with duplicates removed. - Ivan Neretin, May 31 2016

Examples

			81 is in the sequence, since 9! = 2*4*5*7*16*81.
		

Crossrefs

Extensions

a(9) from A177334 by Robert Price, Aug 31 2019
a(10)-a(12) from Amiram Eldar, Sep 17 2019

A241123 Smallest k such that the factorization of k! over distinct terms of A050376 contains exactly n primes.

Original entry on oeis.org

2, 3, 5, 13, 17, 21, 23, 37, 33, 42, 43, 56, 59, 57, 75, 84, 99, 101, 105, 109, 123, 119, 133, 139, 157, 162, 163, 182, 186, 183, 207, 208, 222, 219, 235, 220, 255, 257, 263, 268, 267, 303, 305, 307, 316, 315, 340, 344, 341, 343, 383, 385, 387, 397, 411, 425
Offset: 1

Views

Author

Vladimir Shevelev, Apr 16 2014

Keywords

Examples

			Factorization of 5! over distinct terms of A050376 is 5! = 2*3*4*5. Thus 5 is the smallest k such that such a factorization contains 3 primes: 2,3,5. So a(3)=5.
		

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 (Russian; MR 2000f: 11097, pp. 3912-3913).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Mod[e, 2]; b[1] = 0; b[n_] := Plus @@ (f @@@ FactorInteger[n]); m = 56; v = Table[0, {m}]; c = 0; p = 1; n = 2; While[c < m, p *= n; i = b[p]; If[i <= m && v[[i]] == 0, c++; v[[i]] = n]; n++]; v (* Amiram Eldar, Sep 17 2019 *)
  • PARI
    nbp(n) = {f = factor(n); sum (i=1, #f~, f[i,2] % 2);}
    a(n) = {k = 1; while(nbp(k!) != n, k++); k;} \\ Michel Marcus, Apr 27 2014

Extensions

More terms from Peter J. C. Moses, Apr 17 2014

A241124 Smallest k such that the factorization of k! over distinct terms of A050376 contains at least n nonprime terms of A050376.

Original entry on oeis.org

4, 6, 8, 12, 14, 15, 16, 24, 25, 26, 30, 32, 46, 46, 48, 48, 62, 63, 63, 64, 64, 87, 91, 95, 96, 96, 96, 114, 114, 122, 124, 125, 128, 129, 160, 161, 176, 177, 178, 178, 188, 189, 190, 192, 192, 192, 194, 225, 226, 226, 240, 252, 254, 255, 256, 288, 288, 289, 290, 320
Offset: 1

Views

Author

Vladimir Shevelev, Apr 16 2014

Keywords

Examples

			For k=2,3,4,5,6, we have the following factorizations of k! over distinct terms of A050376: 2!=2, 3!=2*3, 4!=2*3*4, 5!=2*3*4*5, 6!=5*9*16.
Therefore, a(1)=4, a(2)=6.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := DigitCount[n, 2, 1] - Mod[n, 2]; nb[n_] := Total@(f/@ FactorInteger[n][[;;,2]]); a[n_] := (k=1; While[nb[k!] < n, k++]; k); Array[a, 60] (* Amiram Eldar, Dec 16 2018 from the PARI code *)
  • PARI
    nb(n) = {my(f = factor(n)); sum(k=1, #f~, hammingweight(f[k,2]) - (f[k,2] % 2));}
    a(n) = {my(k=1); while (nb(k!) < n, k++); k;} \\ Michel Marcus, Dec 16 2018

Extensions

More terms from Michel Marcus, Dec 16 2018

A241139 Number of nonprimes in factorization of n! over distinct terms of A050376.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 7, 7, 4, 4, 5, 5, 6, 6, 8, 9, 10, 10, 9, 9, 11, 11, 12, 12, 10, 9, 8, 8, 9, 10, 11, 11, 12, 12, 11, 12, 14, 14, 16, 15, 15, 15, 13, 13, 14, 14, 14, 14, 16, 16, 16, 16, 17, 19, 21, 21, 18, 18, 19, 16, 14, 14, 16, 16, 17
Offset: 2

Views

Author

Vladimir Shevelev, Apr 16 2014

Keywords

Examples

			Factorization of 4! over distinct terms of A050376 is 4! = 2*3*4. This factorization contains only one A050376-nonprime. So a(4)=1.
		

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].

Crossrefs

Programs

  • Mathematica
    b[n_] := 2^(-1 + Position[Reverse@IntegerDigits[n, 2], ?(# == 1 &)]) // Flatten; a[n] := Module[{np = PrimePi[n]}, v = Table[0, {np}]; Do[p = Prime[k]; Do[v[[k]] += IntegerExponent[j, p], {j, 2, n}], {k, 1, np}]; Length[Select[(b /@ v) // Flatten, # > 1 &]]]; Array[a, 73, 2]  (* Amiram Eldar, Sep 17 2019 *)
  • PARI
    a(n)={my(f=factor(n!)[,2]); sum(i=1, #f~, hammingweight(f[i]>>1))} \\ Andrew Howroyd, Sep 17 2019

Formula

a(n) = A177329(n) - A055460(n).

Extensions

More terms from Peter J. C. Moses, Apr 17 2014

A241148 Number of factorials k!, 0<=k<=n, relatively prime to n! in Fermi-Dirac arithmetic.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 5, 5, 2, 2, 7, 7, 4, 4, 4, 2, 2, 2, 5, 5, 7, 4, 3, 3, 4, 4, 2, 2, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4, 3, 2, 4, 4, 3, 3, 2, 4, 5, 5, 4, 4, 2, 2, 2, 2, 6, 5, 2, 2, 3, 3, 7, 7, 3, 2, 2, 2, 3, 3, 3, 4, 3, 3, 4, 4, 2, 2, 2, 2, 6, 6, 4, 4, 2, 2, 2, 3, 4
Offset: 0

Views

Author

Vladimir Shevelev, Apr 16 2014

Keywords

Comments

Or, equivalently, the number of factorials k!, 0<=k<=n, for which k! and n! have no common A050376-factors in their factorizations over distinct terms of A050376.
Note that 1 (=0!=1!) corresponds to an empty subset of A050376.

Examples

			0!=1, 1!=1; further we have the following factorizations of k! over distinct terms of A050376 for k = 2,3,4,5,6:
2!=2, 3!=2*3, 4!=2*3*4, 5!=2*3*4*5, 6!=5*9*16. Thus, in the sense of the factorizations being considered, 6! is relatively prime to 0!,1!,2!,3!, and 4!. So a(6)=5.
		

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 (Russian; MR 2000f: 11097, pp. 3912-3913).

Crossrefs

Programs

  • Mathematica
    b[n_] := 2^(-1 + Position[Reverse@IntegerDigits[n, 2], ?(# == 1 &)]) // Flatten; infp[n] := Module[{np = PrimePi[n]}, v = Table[0, {np}]; Do[p = Prime[k]; Do[v[[k]] += IntegerExponent[j, p], {j, 2, n}], {k, 1, np}]; (Prime /@ Range[np])^(b /@ v) // Flatten]; infCoprimeQ[x_, y_] := Intersection[infp[x], infp[y]] == {}; a[n_] := Length @ Select[Range[0, n], infCoprimeQ[n, #] & ]; Array[a, 87, 0] (* Amiram Eldar, Sep 17 2019 *)

Extensions

More terms from Peter J. C. Moses, Apr 18 2014
Previous Showing 11-20 of 23 results. Next