A351977
Number of integer partitions of n with as many even parts as odd parts and as many even conjugate parts as odd conjugate parts.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 2, 0, 2, 4, 2, 1, 6, 6, 7, 9, 11, 10, 13, 17, 17, 21, 28, 36, 35, 41, 58, 71, 72, 90, 106, 121, 142, 178, 191, 216, 269, 320, 344, 400, 486, 564, 633, 734, 867, 991, 1130, 1312, 1509, 1702, 1978, 2288, 2582, 2917, 3404
Offset: 0
The a(n) partitions for selected n (A..C = 10..12):
n = 3 9 15 18 20
----------------------------------------------------------
(21) (63) (A5) (8433) (8543)
(222111) (632211) (8532) (8741)
(642111) (8631) (C611)
(2222211111) (43322211) (43332221)
(44322111) (44432111)
(44421111) (84221111)
(422222111111)
These partitions are ranked by
A350946.
There are four statistics:
There are four additional pairings of statistics:
There are two additional double-pairings of statistics:
Cf.
A000041,
A000070,
A088218,
A098123,
A130780,
A171966,
A195017,
A236559,
A236914,
A241638,
A350849.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],Count[#,?OddQ]==Count[#,?EvenQ]&&Count[conj[#],?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
A351980
Heinz numbers of integer partitions with as many even parts as odd conjugate parts and as many odd parts as even conjugate parts.
Original entry on oeis.org
1, 6, 84, 126, 140, 210, 490, 525, 686, 875, 1404, 1456, 2106, 2184, 2288, 2340, 3432, 3510, 5460, 6760, 7644, 8190, 8580, 8775, 9100, 9464, 11466, 12012, 12740, 12870, 13650, 14300, 14625, 15808, 18018, 18468, 19110, 19152, 20020, 20672, 21450, 22308, 23712
Offset: 1
The terms together with their prime indices begin:
1: ()
6: (2,1)
84: (4,2,1,1)
126: (4,2,2,1)
140: (4,3,1,1)
210: (4,3,2,1)
490: (4,4,3,1)
525: (4,3,3,2)
686: (4,4,4,1)
875: (4,3,3,3)
1404: (6,2,2,2,1,1)
1456: (6,4,1,1,1,1)
2106: (6,2,2,2,2,1)
2184: (6,4,2,1,1,1)
2288: (6,5,1,1,1,1)
2340: (6,3,2,2,1,1)
There are two other possible double-pairings of statistics:
These partitions are counted by
A351981.
Partitions with as many even as odd parts:
- strict conjugate case counted by
A352129
A122111 represents partition conjugation using Heinz numbers.
A195017 = # of even parts - # of odd parts.
A316524 = alternating sum of prime indices.
A350944: # of odd parts = # of odd conjugate parts, counted by
A277103.
A350945: # of even parts = # of even conjugate parts, counted by
A350948.
Cf.
A026424,
A028260,
A098123,
A130780,
A171966,
A241638,
A325700,
A350841,
A350849,
A350941,
A350942,
A350950,
A350951.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Select[Range[1000],Count[primeMS[#],?EvenQ]==Count[conj[primeMS[#]],?OddQ]&&Count[primeMS[#],?OddQ]==Count[conj[primeMS[#]],?EvenQ]&]
A352129
Number of strict integer partitions of n with as many even conjugate parts as odd conjugate parts.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 3, 5, 5, 6, 6, 9, 8, 10, 12, 13, 15, 17, 20, 20, 26, 26, 32, 35, 39, 44, 50, 55, 61, 71, 76, 87, 96, 108, 117, 135, 145, 164, 181, 200, 222, 246, 272, 298, 334, 363, 404, 443
Offset: 0
The a(n) strict partitions for selected n:
n = 3 13 15 18 20 22
------------------------------------------------------------------
(2,1) (6,5,2) (10,5) (12,6) (12,7,1) (12,8,2)
(6,4,2,1) (6,4,3,2) (8,7,3) (8,5,4,3) (8,6,5,3)
(6,5,3,1) (8,5,3,2) (8,6,4,2) (8,7,5,2)
(8,6,3,1) (8,7,4,1) (12,7,2,1)
(8,6,3,2,1) (8,6,4,3,1)
(8,7,4,2,1)
A130780 counts partitions with no more even than odd parts, strict
A239243.
A171966 counts partitions with no more odd than even parts, strict
A239240.
There are four statistics:
There are four other pairings of statistics:
There are three double-pairings of statistics:
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Count[conj[#],?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]
A019507
Droll numbers: numbers > 1 whose sum of even prime factors equals the sum of odd prime factors.
Original entry on oeis.org
72, 240, 672, 800, 2240, 4224, 5184, 6272, 9984, 14080, 17280, 33280, 39424, 48384, 52224, 57600, 93184, 116736, 161280, 174080, 192000, 247808, 304128, 373248, 389120, 451584, 487424, 537600, 565248, 585728, 640000, 718848, 1013760, 1089536, 1244160, 1384448
Offset: 1
Mario Velucchi (mathchess(AT)velucchi.it)
6272 = 2*2*2*2*2*2*2*7*7 is droll since 2+2+2+2+2+2+2 = 14 = 7+7.
For count instead of sum we have
A072978.
Partitions of this type are counted by
A239261, without zero terms
A249914.
For prime indices instead of factors we have
A366748, zeros of
A366749.
-
f:= proc(k, m) # numbers whose sum of prime factors >= m is k; m is prime
local S,p,j;
option remember;
if k = 0 then return [1]
elif m > k then return []
fi;
S:= NULL:
p:= nextprime(m);
for j from k by -m to 0 do
S:= S, op(map(`*`, procname(j,p) , m^((k-j)/m)))
od;
[S]
end proc:
g:= proc(N) local m,R;
R:= NULL;
for m from 1 while 2^m < N do
R:= R, op(map(`*`,select(`<=`,f(2*m,3), N/2^m),2^m));
od;
sort([R])
end proc:
g(10^8); # Robert Israel, Feb 20 2025
-
Select[Range[2, 2*10^6, 2], First[#] == Total[Rest[#]] & [Times @@@ FactorInteger[#]] &] (* Paolo Xausa, Feb 19 2025 *)
-
isok(n) = {if (n % 2, return (0)); f = factor(n); return (2*f[1,2] == sum(i=2, #f~, f[i,1]*f[i,2]));} \\ Michel Marcus, Jun 21 2013
A352142
Numbers whose prime factorization has all odd indices and all odd exponents.
Original entry on oeis.org
1, 2, 5, 8, 10, 11, 17, 22, 23, 31, 32, 34, 40, 41, 46, 47, 55, 59, 62, 67, 73, 82, 83, 85, 88, 94, 97, 103, 109, 110, 115, 118, 125, 127, 128, 134, 136, 137, 146, 149, 155, 157, 160, 166, 167, 170, 179, 184, 187, 191, 194, 197, 205, 206, 211, 218, 227, 230
Offset: 1
The terms together with their prime indices begin:
1 = 1
2 = prime(1)
5 = prime(3)
8 = prime(1)^3
10 = prime(1) prime(3)
11 = prime(5)
17 = prime(7)
22 = prime(1) prime(5)
23 = prime(9)
31 = prime(11)
32 = prime(1)^5
34 = prime(1) prime(7)
40 = prime(1)^3 prime(3)
The restriction to primes is
A031368.
These partitions are counted by
A117958.
A352140 = even indices with odd exponents, counted by
A055922 aerated.
A352143 = odd indices with odd conjugate indices, counted by
A053253 aerated.
Cf.
A000720,
A028260,
A055396,
A061395,
A106529,
A181819,
A195017,
A241638,
A276078,
A324517,
A324524,
A324525,
A325698,
A325700.
-
Select[Range[100],#==1||And@@OddQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
-
from itertools import count, islice
from sympy import primepi, factorint
def A352142_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda k:all(map(lambda x:x[1]%2 and primepi(x[0])%2, factorint(k).items())),count(max(startvalue,1)))
A352142_list = list(islice(A352142_gen(),30)) # Chai Wah Wu, Mar 18 2022
A349159
Numbers whose sum of prime indices is twice their alternating sum.
Original entry on oeis.org
1, 12, 63, 66, 112, 190, 255, 325, 408, 434, 468, 609, 805, 832, 931, 946, 1160, 1242, 1353, 1380, 1534, 1539, 1900, 2035, 2067, 2208, 2296, 2387, 2414, 2736, 3055, 3108, 3154, 3330, 3417, 3509, 3913, 4185, 4340, 4503, 4646, 4650, 4664, 4864, 5185, 5684, 5863
Offset: 1
The terms and their prime indices begin:
1: ()
12: (2,1,1)
63: (4,2,2)
66: (5,2,1)
112: (4,1,1,1,1)
190: (8,3,1)
255: (7,3,2)
325: (6,3,3)
408: (7,2,1,1,1)
434: (11,4,1)
468: (6,2,2,1,1)
609: (10,4,2)
805: (9,4,3)
832: (6,1,1,1,1,1,1)
931: (8,4,4)
946: (14,5,1)
1160: (10,3,1,1,1)
These partitions are counted by
A000712 up to 0's.
A025047 counts alternating or wiggly compositions, complement
A345192.
A116406 counts compositions with alternating sum >= 0, ranked by
A345913.
A138364 counts compositions with alternating sum 0, ranked by
A344619.
A346697 adds up odd-indexed prime indices.
A346698 adds up even-indexed prime indices.
Cf.
A000070,
A000290,
A001700,
A028260,
A045931,
A120452,
A195017,
A241638,
A257991,
A257992,
A325698,
A345958,
A349155.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
Select[Range[1000],Total[primeMS[#]]==2*ats[primeMS[#]]&]
A352141
Numbers whose prime factorization has all even indices and all even exponents.
Original entry on oeis.org
1, 9, 49, 81, 169, 361, 441, 729, 841, 1369, 1521, 1849, 2401, 2809, 3249, 3721, 3969, 5041, 6241, 6561, 7569, 7921, 8281, 10201, 11449, 12321, 12769, 13689, 16641, 17161, 17689, 19321, 21609, 22801, 25281, 26569, 28561, 29241, 29929, 32761, 33489, 35721
Offset: 1
The terms together with their prime indices begin:
1 = 1
9 = prime(2)^2
49 = prime(4)^2
81 = prime(2)^4
169 = prime(6)^2
361 = prime(8)^2
441 = prime(2)^2 prime(4)^2
729 = prime(2)^6
841 = prime(10)^2
1369 = prime(12)^2
1521 = prime(2)^2 prime(6)^2
1849 = prime(14)^2
2401 = prime(4)^4
2809 = prime(16)^2
3249 = prime(2)^2 prime(8)^2
3721 = prime(18)^2
3969 = prime(2)^4 prime(4)^2
The second condition alone (all even exponents) is
A000290, counted by
A035363.
The restriction to primes is
A031215.
These partitions are counted by
A035444.
A352140 = even indices with odd exponents, counted by
A055922 aerated.
Cf.
A000720,
A028260,
A055396,
A061395,
A181819,
A195017,
A241638,
A268335,
A276078,
A324524,
A324525,
A324588,
A325698,
A325700,
A352143.
-
Select[Range[1000],#==1||And@@EvenQ/@PrimePi/@First/@FactorInteger[#]&&And@@EvenQ/@Last/@FactorInteger[#]&]
-
from itertools import count, islice
from sympy import factorint, primepi
def A352141_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda k:all(map(lambda x: not (x[1]%2 or primepi(x[0])%2), factorint(k).items())),count(max(startvalue,1)))
A352141_list = list(islice(A352141_gen(),30)) # Chai Wah Wu, Mar 18 2022
A241636
Number of partitions p of n such that (number of even numbers in p) < (number of odd numbers in p).
Original entry on oeis.org
0, 1, 1, 2, 2, 3, 5, 6, 10, 13, 21, 25, 40, 47, 69, 85, 118, 142, 192, 236, 310, 381, 485, 606, 761, 949, 1168, 1462, 1793, 2230, 2697, 3358, 4040, 4987, 5967, 7348, 8746, 10688, 12675, 15403, 18247, 22028, 25995, 31236, 36798, 43963, 51706, 61487, 72197
Offset: 0
a(6) counts these 5 partitions: 51, 33, 321, 3111, 111111.
-
z = 30; f[n_] := f[n] = IntegerPartitions[n]; s0[p_] := Count[Mod[DeleteDuplicates[p], 2], 0];
s1[p_] := Count[Mod[DeleteDuplicates[p], 2], 1];
Table[Count[f[n], p_ /; s0[p] < s1[p]], {n, 0, z}] (* A241636 *)
Table[Count[f[n], p_ /; s0[p] <= s1[p]], {n, 0, z}] (* A241637 *)
Table[Count[f[n], p_ /; s0[p] == s1[p]], {n, 0, z}] (* A241638 *)
Table[Count[f[n], p_ /; s0[p] >= s1[p]], {n, 0, z}] (* A241639 *)
Table[Count[f[n], p_ /; s0[p] > s1[p]], {n, 0, z}] (* A241640 *)
A241637
Number of partitions p of n such that (number of even numbers in p) <= (number of odd numbers in p).
Original entry on oeis.org
1, 1, 1, 3, 3, 7, 8, 14, 16, 26, 32, 45, 57, 78, 103, 132, 174, 220, 295, 361, 477, 584, 766, 921, 1194, 1436, 1841, 2207, 2782, 3331, 4169, 4981, 6156, 7373, 9019, 10778, 13093, 15636, 18843, 22507, 26920, 32096, 38205, 45470, 53845, 63970, 75377, 89356
Offset: 0
a(6) counts these 8 partitions: 51, 411, 33, 321, 3111, 2211, 21111, 111111.
-
z = 30; f[n_] := f[n] = IntegerPartitions[n]; s0[p_] := Count[Mod[DeleteDuplicates[p], 2], 0];
s1[p_] := Count[Mod[DeleteDuplicates[p], 2], 1];
Table[Count[f[n], p_ /; s0[p] < s1[p]], {n, 0, z}] (* A241636 *)
Table[Count[f[n], p_ /; s0[p] <= s1[p]], {n, 0, z}] (* A241637 *)
Table[Count[f[n], p_ /; s0[p] == s1[p]], {n, 0, z}] (* A241638 *)
Table[Count[f[n], p_ /; s0[p] >= s1[p]], {n, 0, z}] (* A241639 *)
Table[Count[f[n], p_ /; s0[p] > s1[p]], {n, 0, z}] (* A241640 *)
A241639
Number of partitions p of n such that (number of even numbers in p) >= (number of odd numbers in p).
Original entry on oeis.org
1, 0, 1, 1, 3, 4, 6, 9, 12, 17, 21, 31, 37, 54, 66, 91, 113, 155, 193, 254, 317, 411, 517, 649, 814, 1009, 1268, 1548, 1925, 2335, 2907, 3484, 4309, 5156, 6343, 7535, 9231, 10949, 13340, 15782, 19091, 22555, 27179, 32025, 38377, 45171, 53852, 63267, 75076
Offset: 0
a(6) counts these 6 partitions: 6, 42, 411, 222, 2211, 21111.
-
z = 30; f[n_] := f[n] = IntegerPartitions[n]; s0[p_] := Count[Mod[DeleteDuplicates[p], 2], 0];
s1[p_] := Count[Mod[DeleteDuplicates[p], 2], 1];
Table[Count[f[n], p_ /; s0[p] < s1[p]], {n, 0, z}] (* A241636 *)
Table[Count[f[n], p_ /; s0[p] <= s1[p]], {n, 0, z}] (* A241637 *)
Table[Count[f[n], p_ /; s0[p] == s1[p]], {n, 0, z}] (* A241638 *)
Table[Count[f[n], p_ /; s0[p] >= s1[p]], {n, 0, z}] (* A241639 *)
Table[Count[f[n], p_ /; s0[p] > s1[p]], {n, 0, z}] (* A241640 *)
Comments