cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 94 results. Next

A010997 a(n) = binomial coefficient C(n,44).

Original entry on oeis.org

1, 45, 1035, 16215, 194580, 1906884, 15890700, 115775100, 752538150, 4431613550, 23930713170, 119653565850, 558383307300, 2448296039700, 10142940735900, 39895566894540, 149608375854525, 536830054536825, 1849081298960175, 6131164307078475, 19619725782651120
Offset: 44

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: x^44/(1-x)^45. - Zerinvary Lajos, Dec 20 2008
From Amiram Eldar, Dec 15 2020: (Start)
Sum_{n>=44} 1/a(n) = 44/43.
Sum_{n>=44} (-1)^n/a(n) = A001787(44)*log(2) - A242091(44)/43! = 387028092977152*log(2) - 7178888410874815560070307159852/26760193632961425 = 0.9786869603... (End)

A010998 a(n) = binomial coefficient C(n,45).

Original entry on oeis.org

1, 46, 1081, 17296, 211876, 2118760, 18009460, 133784560, 886322710, 5317936260, 29248649430, 148902215280, 707285522580, 3155581562280, 13298522298180, 53194089192720, 202802465047245, 739632519584070, 2588713818544245, 8719878125622720, 28339603908273840
Offset: 45

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: x^45/(1-x)^46. - Zerinvary Lajos, Dec 20 2008
From Amiram Eldar, Dec 15 2020: (Start)
Sum_{n>=45} 1/a(n) = 45/44.
Sum_{n>=45} (-1)^(n+1)/a(n) = A001787(45)*log(2) - A242091(45)/44! = 791648371998720*log(2) - 14357776821749657880334247281129/26165522663340060 = 0.9791324188... (End)

A010999 a(n) = binomial coefficient C(n,46).

Original entry on oeis.org

1, 47, 1128, 18424, 230300, 2349060, 20358520, 154143080, 1040465790, 6358402050, 35607051480, 184509266760, 891794789340, 4047376351620, 17345898649800, 70539987842520, 273342452889765, 1012974972473835, 3601688791018080, 12321566916640800, 40661170824914640
Offset: 46

Views

Author

Keywords

Comments

Coordination sequence for 46-dimensional cyclotomic lattice Z[zeta_47].

Crossrefs

Programs

Formula

G.f.: x^46/(1-x)^47. - Zerinvary Lajos, Dec 20 2008
From Amiram Eldar, Dec 15 2020: (Start)
Sum_{n>=46} 1/a(n) = 46/45.
Sum_{n>=46} (-1)^n/a(n) = A001787(46)*log(2) - A242091(46)/45! = 1618481116086272*log(2) - 14357776821749670963095578951159/12798353476633725 = 0.9795596119... (End)

A017714 Binomial coefficients C(n,50).

Original entry on oeis.org

1, 51, 1326, 23426, 316251, 3478761, 32468436, 264385836, 1916797311, 12565671261, 75394027566, 418094152866, 2160153123141, 10468434365991, 47855699958816, 207374699821536, 855420636763836, 3371363686069236, 12736262814039336, 46252743903616536
Offset: 50

Views

Author

Keywords

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 03 2018: (Start)
G.f.: x^50/(1-x)^51.
E.g.f.: x^50*exp(x)/50!. (End)
From Amiram Eldar, Dec 16 2020: (Start)
Sum_{n>=50} 1/a(n) = 50/49.
Sum_{n>=50} (-1)^n/a(n) = A001787(50)*log(2) - A242091(50)/49! = 28147497671065600*log(2) - 302317348758761320570288162183704329 / 15495222521229983532 = 0.9811065191... (End)

A017715 Binomial coefficients C(n,51).

Original entry on oeis.org

1, 52, 1378, 24804, 341055, 3819816, 36288252, 300674088, 2217471399, 14783142660, 90177170226, 508271323092, 2668424446233, 13136858812224, 60992558771040, 268367258592576, 1123787895356412, 4495151581425648
Offset: 51

Views

Author

Keywords

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 03 2018: (Start)
G.f.: x^51/(1-x)^52.
E.g.f.: x^51*exp(x)/51!. (End)
From Amiram Eldar, Dec 16 2020: (Start)
Sum_{n>=51} 1/a(n) = 51/50.
Sum_{n>=51} (-1)^(n+1)/a(n) = A001787(51)*log(2) - A242091(51)/50! = 57420895248973824*log(2) - 60463469751752265663579884559739219 / 1519139462865684660 = 0.9814572990... (End)

A017716 Binomial coefficients C(n,52).

Original entry on oeis.org

1, 53, 1431, 26235, 367290, 4187106, 40475358, 341149446, 2558620845, 17341763505, 107518933731, 615790256823, 3284214703056, 16421073515280, 77413632286320, 345780890878896, 1469568786235308, 5964720367660956
Offset: 52

Views

Author

Keywords

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 03 2018: (Start)
G.f.: x^52/(1-x)^53.
E.g.f.: x^52*exp(x)/52!. (End)
From Amiram Eldar, Dec 16 2020: (Start)
Sum_{n>=52} 1/a(n) = 52/51.
Sum_{n>=52} (-1)^n/a(n) = A001787(52)*log(2) - A242091(52)/51! = 117093590311632896*log(2) - 120926939503504532846299231985163098 / 1489925242425959955 = 0.9817952764... (End)

A017760 Binomial coefficients C(n,96).

Original entry on oeis.org

1, 97, 4753, 156849, 3921225, 79208745, 1346548665, 19813501785, 257575523205, 3005047770725, 31853506369685, 309847743777845, 2788629694000605, 23381587434312765, 183712472698171725, 1359472297966470765, 9516306085765295355, 63255446334792845595
Offset: 96

Views

Author

Keywords

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 12 2018: (Start)
G.f.: x^96/(1-x)^97.
E.g.f.: x^96*exp(x)/96!. (End)
From Amiram Eldar, Dec 20 2020: (Start)
Sum_{n>=96} 1/a(n) = 96/95.
Sum_{n>=96} (-1)^n/a(n) = A001787(96)*log(2) - A242091(96)/95! = 3802951800684688204490109616128*log(2) - 9868088483131918614290277915496170231743780878869426700864981897216 / 3743576848674424246377459672213933825 = 0.9898949826... (End)

A017761 Binomial coefficients C(n,97).

Original entry on oeis.org

1, 98, 4851, 161700, 4082925, 83291670, 1429840335, 21243342120, 278818865325, 3283866636050, 35137373005735, 344985116783580, 3133614810784185, 26515202245096950, 210227674943268675, 1569699972909739440, 11086006058675034795, 74341452393467880390
Offset: 97

Views

Author

Keywords

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 12 2018: (Start)
G.f.: x^97/(1-x)^98.
E.g.f.: x^97*exp(x)/97!. (End)
From Amiram Eldar, Dec 20 2020: (Start)
Sum_{n>=97} 1/a(n) = 97/96.
Sum_{n>=97} (-1)^(n+1)/a(n) = A001787(97)*log(2) - A242091(97)/96! = 7685131763883640746573763182592*log(2) - 1914409165727592211172313915606620151912614909652567393556011239640929 / 359383377472744727652236128532537647200 = 0.9899961107... (End)

A017762 Binomial coefficients C(n,98).

Original entry on oeis.org

1, 99, 4950, 166650, 4249575, 87541245, 1517381580, 22760723700, 301579589025, 3585446225075, 38722819230810, 383707936014390, 3517322746798575, 30032524991895525, 240260199935164200, 1809960172844903640, 12895966231519938435, 87237418624987818825
Offset: 98

Views

Author

Keywords

Crossrefs

Programs

Formula

From G. C. Greubel, Nov 12 2018: (Start)
G.f.: x^98/(1-x)^99.
E.g.f.: x^98*exp(x)/98!. (End)
From Amiram Eldar, Dec 20 2020: (Start)
Sum_{n>=98} 1/a(n) = 98/97.
Sum_{n>=98} (-1)^n/a(n) = A001787(98)*log(2) - A242091(98)/97! = 15528719852795810168334614265856*log(2) - 1914409165727592211172313915606799843601351282016393511620277508464529 / 177858100075797135623810737079878325400 = 0.9900952340... (End)

A010969 a(n) = binomial(n,16).

Original entry on oeis.org

1, 17, 153, 969, 4845, 20349, 74613, 245157, 735471, 2042975, 5311735, 13037895, 30421755, 67863915, 145422675, 300540195, 601080390, 1166803110, 2203961430, 4059928950, 7307872110, 12875774670, 22239974430, 37711260990, 62852101650, 103077446706, 166509721602
Offset: 16

Views

Author

Keywords

Comments

a(n) = A110555(n+1,16). - Reinhard Zumkeller, Jul 27 2005
Coordination sequence for 16-dimensional cyclotomic lattice Z[zeta_17].
In this sequence only 17 is prime. - Artur Jasinski, Dec 02 2007

Programs

Formula

a(n+15) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)(n+11)(n+12)(n+13)(n+14)(n+15)/16!. - Artur Jasinski, Dec 02 2007
G.f.: x^16/(1-x)^17. - Zerinvary Lajos, Aug 06 2008; R. J. Mathar, Jul 07 2009
a(n) = n/(n-16) * a(n-1), n > 16. - Vincenzo Librandi, Mar 26 2011
From Amiram Eldar, Dec 10 2020: (Start)
Sum_{n>=16} 1/a(n) = 16/15.
Sum_{n>=16} (-1)^n/a(n) = A001787(16)*log(2) - A242091(16)/15! = 524288*log(2) - 16369704448/45045 = 0.9468480104... (End)

Extensions

Some formulas adjusted to the offset by R. J. Mathar, Jul 07 2009
Previous Showing 31-40 of 94 results. Next