A010997
a(n) = binomial coefficient C(n,44).
Original entry on oeis.org
1, 45, 1035, 16215, 194580, 1906884, 15890700, 115775100, 752538150, 4431613550, 23930713170, 119653565850, 558383307300, 2448296039700, 10142940735900, 39895566894540, 149608375854525, 536830054536825, 1849081298960175, 6131164307078475, 19619725782651120
Offset: 44
- T. D. Noe, Table of n, a(n) for n = 44..1000
- Index entries for linear recurrences with constant coefficients, signature (45, -990, 14190, -148995, 1221759, -8145060, 45379620, -215553195, 886163135, -3190187286, 10150595910, -28760021745, 73006209045, -166871334960, 344867425584, -646626422970, 1103068603890, -1715884494940, 2438362177020, -3169870830126, 3773655750150, -4116715363800, 4116715363800, -3773655750150, 3169870830126, -2438362177020, 1715884494940, -1103068603890, 646626422970, -344867425584, 166871334960, -73006209045, 28760021745, -10150595910, 3190187286, -886163135, 215553195, -45379620, 8145060, -1221759, 148995, -14190, 990, -45, 1).
-
[Binomial(n, 44): n in [44..70]]; // Vincenzo Librandi, Jun 12 2013
-
seq(binomial(n,44),n=44..67); # Zerinvary Lajos, Dec 20 2008
-
Table[Binomial[n,44],{n,44,70}] (* Vladimir Joseph Stephan Orlovsky, May 16 2011 *)
A010998
a(n) = binomial coefficient C(n,45).
Original entry on oeis.org
1, 46, 1081, 17296, 211876, 2118760, 18009460, 133784560, 886322710, 5317936260, 29248649430, 148902215280, 707285522580, 3155581562280, 13298522298180, 53194089192720, 202802465047245, 739632519584070, 2588713818544245, 8719878125622720, 28339603908273840
Offset: 45
- T. D. Noe, Table of n, a(n) for n = 45..1000
- Index entries for linear recurrences with constant coefficients, signature (46, -1035, 15180, -163185, 1370754, -9366819, 53524680, -260932815, 1101716330, -4076350421, 13340783196, -38910617655, 101766230790, -239877544005, 511738760544, -991493848554, 1749695026860, -2818953098830, 4154246671960, -5608233007146, 6943526580276, -7890371113950, 8233430727600, -7890371113950, 6943526580276, -5608233007146, 4154246671960, -2818953098830, 1749695026860, -991493848554, 511738760544, -239877544005, 101766230790, -38910617655, 13340783196, -4076350421, 1101716330, -260932815, 53524680, -9366819, 1370754, -163185, 15180, -1035, 46, -1).
-
[Binomial(n, 45): n in [45..70]]; // Vincenzo Librandi, Jun 12 2013
-
seq(binomial(n,45),n=45..67); # Zerinvary Lajos, Dec 20 2008
-
Table[Binomial[n,45],{n,45,77}] (* Vladimir Joseph Stephan Orlovsky, May 16 2011 *)
A010999
a(n) = binomial coefficient C(n,46).
Original entry on oeis.org
1, 47, 1128, 18424, 230300, 2349060, 20358520, 154143080, 1040465790, 6358402050, 35607051480, 184509266760, 891794789340, 4047376351620, 17345898649800, 70539987842520, 273342452889765, 1012974972473835, 3601688791018080, 12321566916640800, 40661170824914640
Offset: 46
- T. D. Noe, Table of n, a(n) for n = 46..1000
- Matthias Beck and Serkan Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv:math/0508136 [math.CO], 2005-2006.
- Index entries for linear recurrences with constant coefficients, signature (47, -1081, 16215, -178365, 1533939, -10737573, 62891499, -314457495, 1362649145, -5178066751, 17417133617, -52251400851, 140676848445, -341643774795, 751616304549, -1503232609098, 2741188875414, -4568648125690, 6973199770790, -9762479679106, 12551759587422, -14833897694226, 16123801841550, -16123801841550, 14833897694226, -12551759587422, 9762479679106, -6973199770790, 4568648125690, -2741188875414, 1503232609098, -751616304549, 341643774795, -140676848445, 52251400851, -17417133617, 5178066751, -1362649145, 314457495, -62891499, 10737573, -1533939, 178365, -16215, 1081, -47, 1).
-
[Binomial(n, 46): n in [46..70]]; // Vincenzo Librandi, Jun 12 2013
-
seq(binomial(n,46),n=46..67); # Zerinvary Lajos, Dec 20 2008
-
Table[Binomial[n,46],{n,46,77}] (* Vladimir Joseph Stephan Orlovsky, May 16 2011 *)
A017714
Binomial coefficients C(n,50).
Original entry on oeis.org
1, 51, 1326, 23426, 316251, 3478761, 32468436, 264385836, 1916797311, 12565671261, 75394027566, 418094152866, 2160153123141, 10468434365991, 47855699958816, 207374699821536, 855420636763836, 3371363686069236, 12736262814039336, 46252743903616536
Offset: 50
-
[Binomial(n,50): n in [50..80]]; // G. C. Greubel, Nov 03 2018
-
Table[Binomial[n, 50], {n, 50, 5!}] (* Vladimir Joseph Stephan Orlovsky, Sep 25 2008 *)
-
for(n=50, 80, print1(binomial(n,50), ", ")) \\ G. C. Greubel, Nov 03 2018
-
A017714_list, m = [], [1]*51
for _ in range(10**2):
A017714_list.append(m[-1])
for i in range(50):
m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
-
[binomial(n, 50) for n in range(50,68)] # Zerinvary Lajos, May 23 2009
A017715
Binomial coefficients C(n,51).
Original entry on oeis.org
1, 52, 1378, 24804, 341055, 3819816, 36288252, 300674088, 2217471399, 14783142660, 90177170226, 508271323092, 2668424446233, 13136858812224, 60992558771040, 268367258592576, 1123787895356412, 4495151581425648
Offset: 51
-
[Binomial(n,51): n in [51..80]]; // G. C. Greubel, Nov 03 2018
-
Table[Binomial[n,51],{n,51,77}] (* Vladimir Joseph Stephan Orlovsky, May 16 2011 *)
-
for(n=51, 80, print1(binomial(n,51), ", ")) \\ G. C. Greubel, Nov 03 2018
-
[binomial(n, 51) for n in range(51,69)] # Zerinvary Lajos, May 23 2009
A017716
Binomial coefficients C(n,52).
Original entry on oeis.org
1, 53, 1431, 26235, 367290, 4187106, 40475358, 341149446, 2558620845, 17341763505, 107518933731, 615790256823, 3284214703056, 16421073515280, 77413632286320, 345780890878896, 1469568786235308, 5964720367660956
Offset: 52
-
[Binomial(n,52): n in [52..80]]; // G. C. Greubel, Nov 03 2018
-
Table[Binomial[n,52],{n,52,80}] (* Vladimir Joseph Stephan Orlovsky, May 16 2011 *)
-
for(n=52, 80, print1(binomial(n,52), ", ")) \\ G. C. Greubel, Nov 03 2018
-
[binomial(n, 52) for n in range(52,70)] # Zerinvary Lajos, May 23 2009
A017760
Binomial coefficients C(n,96).
Original entry on oeis.org
1, 97, 4753, 156849, 3921225, 79208745, 1346548665, 19813501785, 257575523205, 3005047770725, 31853506369685, 309847743777845, 2788629694000605, 23381587434312765, 183712472698171725, 1359472297966470765, 9516306085765295355, 63255446334792845595
Offset: 96
-
[Binomial(n,96): n in [96..110]]; // G. C. Greubel, Nov 12 2018
-
Table[Binomial[n, 96], {n, 96, 120}] (* Vladimir Joseph Stephan Orlovsky, Jul 15 2011 *)
-
a(n)=binomial(n,96) \\ Charles R Greathouse IV, Jun 28 2012
-
[binomial(n, 96) for n in range(96,111)] # Zerinvary Lajos, May 23 2009
A017761
Binomial coefficients C(n,97).
Original entry on oeis.org
1, 98, 4851, 161700, 4082925, 83291670, 1429840335, 21243342120, 278818865325, 3283866636050, 35137373005735, 344985116783580, 3133614810784185, 26515202245096950, 210227674943268675, 1569699972909739440, 11086006058675034795, 74341452393467880390
Offset: 97
-
[Binomial(n,97): n in [97..110]]; // G. C. Greubel, Nov 12 2018
-
Table[Binomial[n, 97], {n, 97, 120}] (* Vladimir Joseph Stephan Orlovsky, Jul 15 2011 *)
-
a(n)=binomial(n,97) \\ Charles R Greathouse IV, Jun 28 2012
-
[binomial(n, 97) for n in range(97,112)] # Zerinvary Lajos, May 23 2009
A017762
Binomial coefficients C(n,98).
Original entry on oeis.org
1, 99, 4950, 166650, 4249575, 87541245, 1517381580, 22760723700, 301579589025, 3585446225075, 38722819230810, 383707936014390, 3517322746798575, 30032524991895525, 240260199935164200, 1809960172844903640, 12895966231519938435, 87237418624987818825
Offset: 98
-
[Binomial(n,98): n in [98..115]]; // G. C. Greubel, Nov 12 2018
-
A017762:=n->binomial(n,98); seq(A017762(k), k=98..200); # Wesley Ivan Hurt, Nov 05 2013
-
Table[Binomial[n, 98], {n, 98, 120}] (* Vladimir Joseph Stephan Orlovsky, Jul 15 2011 *)
-
a(n)=binomial(n,98) \\ Charles R Greathouse IV, Jun 28 2012
-
[binomial(n, 98) for n in range(98,113)] # Zerinvary Lajos, May 23 2009
A010969
a(n) = binomial(n,16).
Original entry on oeis.org
1, 17, 153, 969, 4845, 20349, 74613, 245157, 735471, 2042975, 5311735, 13037895, 30421755, 67863915, 145422675, 300540195, 601080390, 1166803110, 2203961430, 4059928950, 7307872110, 12875774670, 22239974430, 37711260990, 62852101650, 103077446706, 166509721602
Offset: 16
- T. D. Noe, Table of n, a(n) for n = 16..1000
- Matthias Beck and Serkan Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv:math/0508136 [math.CO], 2005-2006.
- Milan Janjic, Two Enumerative Functions.
- Index entries for linear recurrences with constant coefficients, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).
-
[ Binomial(n,16): n in [16..80]]; // Vincenzo Librandi, Mar 26 2011
-
seq(binomial(n,16),n=16..37); # Zerinvary Lajos, Aug 06 2008
-
Table[Binomial[n,16],{n,16,50}] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2011 *)
-
for(n=16, 50, print1(binomial(n,16), ", ")) \\ G. C. Greubel, Aug 31 2017
Some formulas adjusted to the offset by
R. J. Mathar, Jul 07 2009
Comments